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Chapter 1

Mechanics

There’s a lot of stuff in the world, and the stuff moves around a lot. How exactly does the stuff
move around? Newton thought he knew. It turns out he didn’t know, as Einstein made clear.
However, Fig. 1.1 shows that Newton had a much bolder hairsytle than Einstein. Out of respect
for his wild fashion choice, and for the subject distribution on the preliminary exams, this chapter
will be spent on Newtonian mechanics.

Figure 1.1: On the left, People Magazine’s Sexiest Man Alive of 1687, Isaac Newton. On the right,
Albert Einstein, wondering why Newton’s face is so skinny, and suddenly realizing that Lorentz
contraction might be real after all.

In 1.1, we’ll review mechanics in its Newtonian, Lagrangian, and Hamiltonian formulations. In
1.2, we focus on stuff that moves back and forth, and describe how it does so. In 1.3, we look at
how gravity can make stuff move back and forth, or make stuff bounce, and how different kinds
of forces can also make stuff bounce. In 1.4, we begrudgingly accept that not all stuff consists of
point particles, and talk about stuff that’s big and rigid. In 1.5, we let the real world encroach
even further, by talking about stuff that’s big and bendy. In 1.6, we talk about how we all live on
a yellow submarine, and the submarine can accelerate, leading to apparent forces. Finally, in 1.7,
we collect additional interesting problems about stuff that moves.

1



2 CHAPTER 1. MECHANICS

1.1 Review of Basics

Newton’s three laws can be summarized in one statement: momentum is conserved. To spell it out
in the usual trifecta:

• If an object is #foreveralone, it has nobody to share its momentum with. It has to keep its
own momentum constant, as well as its mass, so it moves with a constant velocity v.

• If an object has a friend, it can exchange momentum with that friend. If pi denotes the
momentum of the ith object, then as a convention, we’ll denote the rate at which its friends
give it momentum by the force Fi, where Fi is the sum of the rate of momentum Fj→i given
by all friends j ̸= i. Symbolically,

dpi
dt

= Fi =
∑
j ̸=i

Fj→i. (1.1.1)

• Friends don’t let friends violate momentum conservation. One way to ensure momentum
conservation is to require each two-body interaction to be momentum conserving:

Fi→j = −Fj→i. (1.1.2)

This will work for now. It won’t work in Chapter 2, when the friends are invisible and all
around us.

This demonstrates how Newton’s laws are almost devoid of content. Since they don’t tell us the
forces themselves, they’re rarely enough on their own. But momentum conservation is a powerful
statement, and sometimes it’s all we need.

Problem 1.1 (M04M1)
Two elastic spherical particles with masses m and M (m≪M) are constrained to move along a
straight line with an elastically reflecting wall at its end. At t = 0 they are in motion as shown,
with u0 ≫ v0.

m M

d

u0 v0

Find the subsequent motion of M , averaged over the period of motion of m. In this approxima-
tion, how far does M travel before turning around?
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Let’s let x = 0 denote the wall position, x and u the small mass position and velocity, and X
and v the large mass position and velocity. There are two kinds of collisions. The small mass
could bounce off the wall, in which case we obviously have v → −v, V → V . The small mass
could also bounce off the large mass, in which case we have to do a bit of work. One could write
down conservation of momentum and energy, shift to a center of mass frame, solve, and shift
back to determine

u→ 2
mu+Mv

m+M
− u, v → 2

mu+Mv

m+M
− v. (1.1.3)

But one would be working too hard. Geometry is the key to this problem. Looking carefully at
the forms of momentum and energy,

mu+Mv,
1

2
mu2 +

1

2
Mv2, (1.1.4)

it becomes clear that we should be looking at the vector V = (
√
mu,

√
Mv). Its magnitude

is constant as a consequence of energy conservation, and its dot product with the fixed vector
a = (

√
m,

√
M) is constant as a consequence of momentum conservation. The only way to change

V while keeping V · a and |V | constant is to reflect V about a, which looks like “bouncing” V
off a.

Interesting. We started by talking about a 1D bounce, and now we’re talking about a 2D bounce.
Let’s change coordinates and make the bouncing analogy even more precise: let

x′ =
√
mx, X ′ =

√
MX,

u′ =
√
mu, v′ =

√
Mv.

(1.1.5)

Now V = (u′, v′), and it’s still bouncing off of a. The point of the coordinate change was to
(a) make V the velocity in x′-X ′ space, and to (b) make a parallel to the boundary of the
configuration space, as shown in Figure 1.2.

X

x

a

X ′

x′

a

Figure 1.2: The accessible region of configuration space is shaded in both coordinate systems.
The coordinate change (1.1.5) brings the oblique edge into alignment with a.

With both of these things settled, we now have a problem which looks very different from what
we started with: a billiards ball bouncing around in a narrow triangle. There’s a well-known
approach for billiards problems like this: “unwrap” the triangle into its successive mirror images,
and let the billiards ball move in a straight line through the hall of mirrors. This is shown in
Figure 1.3.
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Figure 1.3: By reflecting the triangle about its edges, we can unravel the billiards trajectory into
a straight line.

Since m≪M , the triangles are tall and skinny, so we can use the distance from the origin in the
unraveled trajectory as a proxy for X ′. The problem boils down to determining how close to the
origin we get if we start out at (0,

√
Md) and start moving in the (−

√
mu0,−

√
Mv0) direction.

A pinch of trigonometry gives an answer of

X ′
min ≈

√
Md cos

(
tan−1

√
Mv0√
mu0

)
=

√
Md

√
mu0√

Mv20 +mu20
. (1.1.6)

It follows that the large mass moves a distance

d− X ′
min√
M

= d

1− 1√
1 +

Mv20
mu20

 . (1.1.7)

That was smooth, if I may say so myself. But life isn’t always so smooth. Sometimes the going
gets rough, and then energy is dissipated due to friction. Friction is a complicated area of modern
research, but in undergraduate mechanics, we typically ignore this and model friction according
to Amonton’s laws. The force of static friction can have a magnitude up to µsN , where µs is the
coefficient of static friction and N is the magnitude of the normal force. Kinetic friction follows
the same rule with µk in place of µs.

Problem 1.2 (J05M1)
A long rope is wound around a cylinder of radius r so that a length, l, of the rope is in contact
with the cylinder. The coefficient of static friction between the rope and the cylinder is µs. A
force F is exerted on one end of the rope. For a given F , r, l, and µs, what force f must be
applied to avoid the rope slipping? Explain why a small child can hold a large ocean liner in
place using a device like this.
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F

fµs

This is a classic. The solution follows immediately from the rule for static friction. If we look
at an infinitesimal angular slice dθ, where the tension on the rope is T (θ), the normal force is
2T (θ) sin dθ

2 ≈ T (θ)dθ. That means static friction is permitted to assist our small child by up to
µsT (θ)dθ of force. It follows that

dT = µsT dθ, (1.1.8)

and integrating this gives T = feµsθ = feµsl/r. In order for this tension to balance the large
force F , we only need f = Fe−µsl/r, so a few turns of rope around the cylinder will suffice to
exponentially suppress the force of the ocean liner.

When it comes to friction, Newton’s laws are the way to go. But when it comes to just about
anything else, there are fancier tools waiting to be used. These tools reflect in a deep way on the
structure of physical theories and on the link between classical and quantum physics, but they’re
also a nice way to solve exam problems quickly.

Lagrangian mechanics starts from a scalar function, the Lagrangian, which depends on positions
and velocities. In mechanics, it is given by the difference between kinetic and potential energies:

L(x, ẋ) = T − V. (1.1.9)

We can form the equations of motion using the Euler-Lagrange equations,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0. (1.1.10)

The main attraction of this method is that the coordinates x need not be the Cartesian position
coordinates. The Euler-Lagrange equations enjoy a general coordinate invariance, so we can use
any coordinates we damn well please, and Euler-Lagrange will spit out the correct equations of
motion. This is especially useful for constrained systems.

Problem 1.3 (J09M3)
A uniform ladder leans against a frictionless vertical wall and rests on a frictionless horizontal
floor. It is released from rest, with the ladder and the floor initially making an angle α. At some
point, the ladder will separate from the wall. Determine the angle the ladder makes with the
floor when this happens.
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α

g

The only horizontal force on the ladder is the normal force from the wall, Nw, so

Nw = mẍ, (1.1.11)

where x is the horizontal coordinate of the center of mass of the ladder, and m is its mass. In
order for the ladder to separate from the wall, we need Nw = 0, or ẍ = 0.

Now we determine ẍ. But first, we recognize that x is a rather unfortunate coordinate to be
using, because there’s also a y, and x and y are constrained to lie on some circular arc and that’s
messy. So instead, we’ll let θ be our coordinate, where θ is the angle between the ladder and the
floor. The center of mass of the ladder is at

(
ℓ
2 cos θ,

ℓ
2 sin θ

)
, where ℓ is the length of the ladder.

From this, we can immediately write down a Lagrangian,

L =
mℓ2

8
θ̇2 − mgℓ

2
sin θ. (1.1.12)

And in turn, we can immediately write down the Euler-Lagrange equation,

θ̈ − 2g

ℓ
cos θ = 0. (1.1.13)

Look familiar? It’s the equation of motion for an inverted pendulum with length ℓ
2 (and a shifted

angle coordinate). That’s because the center of mass is constrained to lie on a circle with this
radius. Anyway, we want to solve ẍ = 0, so let’s compute:

ẍ =
d

dt

(
− ℓ
2
θ̇ sin θ

)
=
ℓ

2

(
−θ̈ sin θ − θ̇2 cos θ

)
. (1.1.14)

We now have two equations for θ̈, so we can eliminate and find
2g

ℓ
sin θ − θ̇2 = 0. (1.1.15)

Finally, we use conservation of energy. The energy is
mℓ2

8
θ̇2 +

mgℓ

2
sin θ, (1.1.16)

and it will always be equal to its initial value, mgℓ
2 sinα. This gives

θ̇2 =
4g

ℓ
(sinα− sin θ), (1.1.17)

so we can solve and find
θ = sin−1

(
2

3
sinα

)
. (1.1.18)
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Problem 1.4 (M06M2)
To compensate for the fact that the period of a simple pendulum depends on the amplitude
of oscillation, the 17th century Dutch physicist Christian Huygens devised the following setup,
depicted in the figure below. It shows a simple pendulum consisting of a mass m and a string
of length ℓ0 whose motion is constrained by a cusp shaped piece of wood. The problem is to
determine the shape of the wooden surface so that the period of the pendulum is independent
of the amplitude.

m

x(θ)

y(θ)

θ
ℓ(θ)

a) Parametrize the shape of the surface by x(θ) and y(θ), as indicated in the figure. Write the
Lagrangian for the pendulum.

b) What property must the Lagrangian have in order for the period of oscillation to be inde-
pendent of the amplitude? Find the required shape (x(θ), y(θ)).

First, let’s take a moment to recognize that Huygens solved this problem before Lagrangian
mechanics was invented. He would have had to use results on the evolutes of cycloids, and stuff
like that which no one cares about anymore. Still, very badass of him.

Anyway, let’s solve it in a modern way. We’ll clearly use θ as our coordinate. The position of
the mass at angle θ is

(x(θ)− ℓ(θ) sin θ, y(θ)− ℓ(θ) cos θ) . (1.1.19)
From this we can write the Lagrangian,

L =
1

2
mθ̇2

(
x′2 + y′2 + ℓ2 + ℓ′2 − 2ℓ(x′ cos θ − y′ sin θ)− 2ℓ′(x′ sin θ + y′ cos θ)

)
−mg(y(θ)− ℓ(θ) cos θ).

(1.1.20)

This is an unholy mess. Luckily we have a few constraints on ℓ, x, and y. The first is obvious:
θ is the angle tangent to the curve, so

x′ = y′ tan θ. (1.1.21)

The second comes from writing

ℓ(θ) = ℓ0 −
ˆ θ

0

√
x′(θ)2 + y′(θ)2 dθ, (1.1.22)
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from which it follows that ℓ′ = −
√
x′2 + y′2. This simplifies the Lagrangian all the way down to

L =
1

2
m(ℓθ̇)2 −mg(y − ℓ cos θ). (1.1.23)

Now we try to cast this into the form of the Lagrangian for a harmonic oscillator, and see what
constraint this imposes. Let

dψ

dt
= ℓθ̇, (1.1.24)

so dψ
dθ = ℓ. We then need

ψ2 ∝ y − ℓ cos θ. (1.1.25)

Differentiating with respect to θ gives

2ψℓ ∝ y′ − ℓ′ cos θ + ℓ sin θ = ℓ sin θ, (1.1.26)

where we use the constraints written above to simplify. Taking a time derivative, this implies
ℓ = k cos θ, and a θ derivative of this gives

y′ = −k sin(2θ) =⇒ y = −k
2
(1− cos(2θ)). (1.1.27)

Working from x′ = y′ tan θ, we then have

x = −k
2
(2θ − sin(2θ)) . (1.1.28)

These are the equations of a cycloid of radius k
2 .

Finally, there is the Hamiltonian formulation of mechanics. The Hamiltonian formulation is brilliant
and of fundamental importance to theoretical dynamics, quantization, and statistical mechanics.
It is not, however, an indispensible tool for problem solving; typically the Lagrangian approach is
just as fruitful. As a compromise, we’ll look briefly at the formulation and use it to solve a problem
that could also be solved with a Lagrangian.

The Hamiltonian formulation replaces the velocities ẋ with the canonical momenta px ≡ ∂L
∂ẋ , via

the Legendre transformation
H(x, p) =

∑
x

pxẋ− L. (1.1.29)

The dependence on ẋ is replaced by dependence on px. In mechanics, we have H = T + V . The
Euler-Lagrange equations imply the Hamilton principal equations,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (1.1.30)

Note that this is a first order system.

Problem 1.5 (M02M1)
A small particle of mass m is constrained to slide, without friction, on the inside of a circular
cone whose vertex is at the origin and whose axis is along the z-axis. The half angle at the apex
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of the cone is α and there is a uniform gravitational field g, directed downward and parallel to
the axis of the cone.

z

x

y

g

α

a) Determine a set of generalized coordinates, and obtain the equations of motion in these
coordinates.

b) Show that a solution of the equations of motion is a circular orbit at a fixed height z0. Obtain
an expression for the frequency, ω, of this motion.

c) Show that the circular motion is stable. If Ω is the frequency of small oscillations about the
unperturbed motion, show that the ratio Ω/ω depends only on α. Determine this dependence.

We can use r =
√
x2 + y2 and the azimuthal angle θ as generalized coordinates. The Lagrangian

is
L =

1

2
m
(
ṙ2 csc2 α+ r2θ̇2

)
−mgr cotα. (1.1.31)

This gives canonical momenta

pr = mṙ csc2 α, pθ = mr2θ̇. (1.1.32)

The Hamiltonian is then

H =
1

2m

(
p2r sin

2 α+
p2θ
r2

)
+mgr cotα. (1.1.33)

The Hamilton equations are

ṙ =
pr
m

sin2 α, ṗr =
p2θ
mr3

−mg cotα, (1.1.34)

θ̇ =
pθ
mr2

, ṗθ = 0. (1.1.35)

We obtain a circular orbit if ṗr = 0. The frequency of the orbit is given by ω = pθ
mr20

, so we have

mr0ω
2 −mg cotα = 0 =⇒ ω =

√
g cotα

r0
=

√
g

z0
cotα. (1.1.36)

Now we perturb the orbit. It follows from the equations of motion that

r̈ =
ṗr
m

sin2 α =
p2θ
m2r3

sin2 α−mg sinα cosα. (1.1.37)
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The right hand side vanishes at r = r0, so to first order in u ≡ r − r0 we have

ü+ 3
u

m2r40
p2θ sin

2 α = 0. (1.1.38)

It follows that
Ω =

√
3
pθ
mr20

sinα =
√
3ω sinα. (1.1.39)

1.2 Oscillators and Normal Modes

In Problem 1.5, we looked at small oscillations around a stable point in phase space, and found
that the resulting equation of motion looks like that of a harmonic oscillator. This is a very general
phenomenon. For a particle on a line, if the potential V (x) has a critical point at x = x0 with
nonzero second derivative, then the equation of motion for a particle near that point is

mẍ+
d2V

dx2

∣∣∣∣
x=x0

(x− x0) = 0. (1.2.1)

This equation describes a harmonic oscillator with frequency

ω =

√
1

m

d2V

dx2

∣∣∣∣
x=x0

. (1.2.2)

Problem 1.6 (J01M1)
Find the frequency of small oscillations about uniform circular motion of a point mass that is
constrained to move on the surface of a torus (donut) of major radius a and minor radius b whose
axis is vertical.

b ag

Let θ be the angle around the inner circle of radius b, with θ = 0 the bottom of the tube, and
let ϕ be the angle around the outer circle of radius a. Then

L =
1

2
m
(
(a+ b sin θ)2ϕ̇2 + b2θ̇2

)
+mgb cos θ. (1.2.3)

Clearly ϕ̈ = 0, and
bθ̈ = −g sin θ + (a+ b sin θ) cos θϕ̇2. (1.2.4)
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Setting the left hand side to zero, we find a circular orbit with

ϕ̇ =

(
g tan θ0

a+ b sin θ0

)1/2

. (1.2.5)

Now we perturb about this equilibrium. We have chosen ϕ̇ such that the right hand side (1.2.4)
vanishes at θ0, so

bθ̈ ≈
(
−g cos θ0 + b cos2 θ0ϕ̇

2 − (a+ b sin θ0) sin θ0ϕ̇
2
)
(θ − θ0) (1.2.6)

for θ ≈ θ0. Substituting for ϕ̇, we find

θ̈ +

(
g

b
sec θ0 −

g sin θ0 cos θ0
a+ b sin θ0

)
(θ − θ0) = 0. (1.2.7)

It is simple to show that the quantity in parentheses is positive, so the oscillations are stable
with frequency

Ω =

√
g

b
sec θ0 −

g sin θ0 cos θ0
a+ b sin θ0

. (1.2.8)

When there is more than one degree of freedom, the same sort of point holds, but there’s a bit
more work to be done. For a system with N degrees of freedom, the Lagrangian is generically of
the form

L =
1

2
gij ẋ

iẋj − V (x1, ..., xn), (1.2.9)

where gij is a constant symmetric tensor and repeated indices are summed. At a critical point
(x10, . . . , x

n
0 ) of V , all its first derivatives vanish and so we can locally express it as

V = V0 +
1

2

∂2V

∂xi∂xj
(xi − xi0)(x

j − xj0). (1.2.10)

Substituting this into the Lagrangian, we obtain equations of motion

gij ẍ
j +

∂2V

∂xi∂xj
(xj − xj0) = 0. (1.2.11)

This looks like harmonic oscillator equations, but all the degrees of freedom are tangled up together,
which is no good. To fix this, take the inverse matrix gij (i.e., such that gijgjk = δik, and multiply
by it, giving

ẍi + gij
∂2V

∂xj∂xk
(xk − xk0) = 0. (1.2.12)

Now the accelerations are straightened out, but we have the matrix

Aik ≡ gij
∂2V

∂xj∂xk
(1.2.13)

mixing up all the positions. The only way to avoid the mixing-up is to find the eigenvectors of Aik,
and change coordinates so that these are the degrees of freedom.

The eigenvectors of Aik are called the normal modes of the system. If a system is perturbed along
a normal mode, it will oscillate only in that mode, by construction. The eigenvalue corresponding
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to a normal mode is the square of the frequency of that mode. It follows that the signature of Aik
determines the stability of the critical point of V .

Problem 1.7 (J09M1)
Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k.
The spring is attached to the rods of the pendula, which are massless and inextensible, at their
half-way points, as shown. Throughout, assume the angles θ1 and θ2 are small and that motion
is confined to the 2D plane.

l

m m

k

θ1 θ2

l/2

l/2

a) What are the normal frequencies of the system, and the corresponding normal mode vectors?

b) Consider now the case of “weak coupling” – i.e., the case when k is small. With respect to
what is k small?
At t = 0 the lefthand pendulum is displaced by an angle θ1(0) = θ0 and released from rest;
the righthand pendulum is at rest with θ2 = 0. Find expressions for θ1(t) and θ2(t) for t > 0.
How long will it take before the lefthand mass stop swinging and the righthand mass achieves
maximum amplitude?

The Lagrangian for the system is

L =
ml2

2
(θ̇21 + θ̇22)−

mgl

2
(θ21 + θ22)−

kl2

8
(θ2 − θ1)

2. (1.2.14)

This gives equations of motion

θ̈1 +
g

l
θ1 +

k

4m
(θ1 − θ2) = 0, (1.2.15)

θ̈2 +
g

l
θ2 +

k

4m
(θ2 − θ1) = 0. (1.2.16)

Everything tangled up, as promised. As a matrix equation, this is(
θ̈1
θ̈2

)
+

(
α −β
−β α

)(
θ1
θ2

)
= 0, (1.2.17)
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where α = k
4m + g

l and β = k
4m . The eigenvalues of the matrix are λ± = α ± β, and so the

normal mode frequencies are

ω+ =

√
k

2m
+
g

l
, ω− =

√
g

l
. (1.2.18)

The normal modes are the eigenvectors v+ = (1,−1) and v− = (1, 1).

The system begins at displacement (θ0, 0) = θ0
2 (v++v−). Since we begin from rest, the displace-

ment at time t will be given by

θ0
2
(v+ cosω+t+ v− cosω−t) . (1.2.19)

We are looking for the first time when the displacement becomes (0, c), which will occur when
cosω+t = − cosω−t. Assuming weak coupling (kl ≪ mg), the frequencies are related by

ω+ = ω−

√
1 +

kl

2mg
≈ ω− +

k

4m

√
l

g
. (1.2.20)

At
t = 4π

√
g

l

m

k
, (1.2.21)

we will have ω+t ≈ ω−t+ π, so our condition is satisfied.

Problem 1.8 (J15M2)
A thin hoop of mass m and radius R is suspended from its rim (point A) and is free to rotate
around point A in the plane of the hoop. A small bead of equal mass m can slide without friction
on the hoop.

A

m

m

R
g

Find the frequencies of the normal modes for this system.

Let θh and θb be the angle of the hoop and bead respectively, both with respect to vertical. The
center of mass positions are

xh = (R sin θh,−R cos θh), xb = (R(sin θh + sin θb),−R(cos θh + cos θb)). (1.2.22)
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Assuming small angles, this is

xh = (Rθh,
1

2
Rθ2h), xb = (R(θh + θb),

1

2
R(θ2h + θ2b )). (1.2.23)

The Lagrangian is then

L =
1

2
mR2

(
2θ̇2h + 2θ̇hθ̇b + θ̇2b

)
− 1

2
mgR

(
2θ2h + θ2b

)
. (1.2.24)

This is of the form 1
2gij ẋ

iẋj − 1
2Hijx

ixj , with

gij = mR2

(
2 1
1 1

)
, Hij = mgR

(
2 0
0 1

)
. (1.2.25)

The matrix of interest is Aik = gijHjk. Working this out, we find

A =
g

R

(
2 −1
−1 2

)
. (1.2.26)

The eigenvalues are g
R and 3 gR , so the normal mode frequencies are

√
g
R and

√
3 gR .

The key property of simple harmonic oscillation is that the frequency is independent of the ampli-
tude. If the system is at a degenerate point in phase space, small oscillations may be anharmonic.
It’s hard to come by clean analytic solutions for anharmonic oscillators.

Problem 1.9 (M00M3)
A circular hoop of radius a rotates about a vertical diameter with constant angular velocity
ω. A small bead of mass m is constrained to slide without friction on the hoop. Consider the
case when ω2 = g/a. The bead can undergo small oscillations around θ = 0. These are not
simple harmonic oscillations! Determine the period of these small oscillations. You may leave an
unevaluated definite integral in your expression, but your solution should make it obvious how
the period depends on the amplitude of oscillation.

m
θ

ω

The Lagrangian is
L =

1

2
m
(
a2ω2 sin2 θ + a2θ̇2

)
+mga cos θ, (1.2.27)
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so the equation of motion is

ma2θ̈ +mga sin θ −ma2ω2 sin θ cos θ = 0. (1.2.28)

For generic ω, there will be a term linear in θ, and the oscillation is harmonic. But since
ω2 = g/a, the linear term cancels, so we are left with

θ̈ +
g

2a
θ3 = 0. (1.2.29)

Our goal is to compute the time required for the bead to move from −θ0 to θ0 and back again,
or

T =

ˆ
dT = 4

ˆ θ0

0

dθ

θ̇
. (1.2.30)

We can determine θ̇ from the conservation of energy. Multiplying the equation of motion by θ̇,
we find the first integral

d

dt

(
θ̇2 +

g

4a
θ4
)
= 0, (1.2.31)

so at angle θ, we have
θ̇2 =

g

4a
(θ40 − θ4). (1.2.32)

Substituting this into the integral, we find

T = 8

√
a

g

ˆ θ0

0

dθ√
θ40 − θ4

. (1.2.33)

To make the dependence on θ0 explicit, define u = θ/θ0, so

T = 8

√
a

g

1

θ0

ˆ 1

0

du√
1− u4

. (1.2.34)

Problem 1.10 (M01M2)
A particle of mass m moves in a one-dimensional potential V (x) = −ax2 + bx4 with very light
damping. The particle is set in motion with a large initial velocity. Suppose now we measure
the period of the motion for each full oscillation, and call these periods T1, T2, T3, T4, and so
on. It is observed that the Ti briefly become very large for i near some i0.

a) Explain what makes the periods get large.

b) Obtain a scaling form for Ti near i = i0, valid in the limit of small damping. (A scaling form
would be something like T ∼ |i − i0|α for some α, or T ∼ log |i − i0|, etc). Hint: consider
first the motion without the friction, mẍ = −V ′(x). Recalling that this motion is necessarily
periodic, derive an integral formula relating the period of oscillation to the energy and the
turning points x− and x+ of the motion.

c) Give an approximate sketch of Ti as a function of i.
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It is clear why the periods get large. The potential has the form shown in Figure 1.4. As
the energy gets close to zero, the particle will move very slowly over the central hump in the
potential, making the period very large.

V (x)

x

Figure 1.4

To address this quantitatively, we need to determine the period of a particle with energy E. We
start by assuming E > 0, so this is given by

T =
√
2m

ˆ x+

x−

dx√
E − V (x)

, (1.2.35)

where x− < x+ are the unique points at which E = V (x). We need to determine the dominating
contribution to the integral from the region where |x| is small. In particular, we can take
|x| ≪

√
a/b, so that the bx4 term in the potential is negligible. We then have

T ≈
√
2m

ˆ ϵ

−ϵ

dx√
E + ax2

=

√
2m

E

1

i
√
a/E

sin−1

(
i

√
a

E
x

)∣∣∣∣∣
ϵ

−ϵ

. (1.2.36)

Since we are taking E very small while the scale of ϵ is fixed, the argument of sin−1 here is large
and imaginary. Looking at sinx = 1

2i(e
ix− e−ix), it’s clear that in order to get a large imaginary

result we want a large imaginary argument. Working through the details, sin−1(iy) ≈ i log(2y)
for |y| ≫ 1. Using this, we find that T scales as a logarithm of E. Since trajectories near the
critical E all look similar, the damping should subtract a constant δE for each oscillation, so we
have T ∼ log |i− i0|.

Following this logarithmic divergence, the particle will be stuck on one side of the hump, and so
its oscillation will be roughly harmonic. The period thus settles down to some constant value.
The following sketch roughly captures the behavior.

T

ii0
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1.3 Orbits and Scattering

Do you ever feel alone, adrift in an empty universe? The world is a cruel place. Sometimes it feels
like no one wants you. We are condemned to live out our lives treading the soil of our pale blue
dot in the sky, wondering if someone, somewhere in this vast cosmos, someone wants us.

In these dark times, it’s important to remember that we are never alone. The gravitational field
is all around us, and no matter how much emotional baggage you may be carrying, it will always
pull. The heavier your problems, the harder it tugs.

This most reliable of companions can be described in a few equations. The force of gravity between
two masses is

F = −Gm1m2

r2
r̂, (1.3.1)

where r is a displacement vector from one object to the other and the minus sign indicates that
the force is always attractive. Since the inertial mass in F = ma is the same as the gravitational
mass appearing here - a fact of enormous importance - the mass cancels, and we can write

ẍ = −∇ϕ, (1.3.2)

where
ϕ =

∑
i

−Gmi

ri
. (1.3.3)

The scalar ϕ is called the gravitational potential, and its negative gradient is the gravitational field.
Since ∇2

(
1
r

)
= −4πδ(x), we can also write this equation as

∇2ϕ = 4πGρ, (1.3.4)

where ρ is the mass density.

Problem 1.11 (J99M3)
A rod of length L, mass m and uniform mass density is circling in an orbit around the Sun at
distance R (between the center of the rod and the Sun). The mass of the Sun is M . Assume
that the rod is always pointed in the radial direction. Calculate the tension at the center of the
rod.

The force of gravity on the rod is
F = −GMm

R2
r̂, (1.3.5)

which must be equal in magnitude to the centripetal force mRω2 if the rod is to maintain a
circular trajectory. It follows that ω =

√
GM
R3 .

In order to maintain rigidity, there must be some tension in the rod which pulls on the outer bits
and pushes on the inner bits, so that they all experience the right amount of centripetal force.
A piece of the rod of length dx at position x (measured from the center) will feel a force due to
tension of T (x + dx) − T (x), and it has a mass m

L dx. It needs a compensating inward force of
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m
L dx× 3xω2 (the factor of 3 comes from 1 from the change in the centripetal force at R+ x and
2 from the change in the gravitational force). Therefore,

L

m
T ′(x) = −3xω2. (1.3.6)

Imposing boundary conditions T (−L/2) = T (L/2) = 0, this gives

T (x) =
3GMmL

8R3
− 3GMm

2LR3
x2, (1.3.7)

so in particular, T (0) = 3GMmL
8R3 .

So, you’re probably asking: just hypothetically, if no one else wants me and I’m desperate enough
to strike up a relationship with an invisible field defined solely for calculation purposes, how might
that relationship go? Johannes Kepler addressed this question during an unhappy marriage, and it
was answered in fuller detail later on by the lifelong bachelor and the J. Crew model himself, Isaac
Newton. The behavior of a test mass (e.g., a planet) in the gravitational field of a fixed point mass
(e.g., a star) is conventionally described by Kepler’s laws:

1. Planets orbit in conic sections (circles, ellipses, parabolae, or hyperbolae) with one of the foci
at the star.

2. Planets sweep out equal areas in equal times.

3. For bound orbits, the period scales as a3/2, where a is the semimajor axis.

The second law is trivial to prove; it expresses the conservation of angular momentum. We have
dA

dt
=

1

2 dt
(r × dr) =

L

2m
. (1.3.8)

Angular momentum is conserved about the center of any central force (i.e., a force of the form
F (r) = f(r)r̂), and the result follows.

The third law is easiest to see by looking at the scaling behavior of gravity. Consider again the
equations of motion

ẍ = −∇ϕ, ∇2ϕ = 4πGρ. (1.3.9)
It is straightforward to show that these equations are invariant under the rescaling

m 7→ αm, x 7→ βx, t 7→ α−1/2β3/2t. (1.3.10)

It follows that t ∝ a3/2.

The first law has some more meat on its bones. We won’t prove it here, but we can sketch out how
it works using the radial equation of motion. The Lagrangian for an orbiting planet is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+
GMm

r
, (1.3.11)

which gives mr2θ̇ = const and
mr̈ −mrθ̇2 +

GMm

r2
= 0. (1.3.12)
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E

r
r0

Emin

Figure 1.5: The effective potential sets the dynamics of the radial coordinate r.

Letting L = mr2θ̇ (just to be deliberately confusing), this becomes

r̈ +
GMm

r2
− L2

mr3
= 0. (1.3.13)

This looks like the equation we would get for a one-dimensional system with effective potential

Veff(r) = −GMm

r
+

L2

2mr2
. (1.3.14)

Unless we’re on a radial infall orbit, for which L = 0, the effective potential goes to infinity as
r → 0. This is sometimes called the centrifugal barrier. The effective potential takes the form
shown in Figure 1.5, which leads to four possibilities for the energy:

• If E = Emin, then the orbit is stuck at r0. This is clearly a circular orbit.

• If Emin < E < 0, then r oscillates between two values. This is an elliptical orbit.

• If E = 0, then r can escape to infinity, but with vanishingly small velocity. This turns out to
be a parabolic orbit.

• If E > 0, then r can escape to infinity with finite velocity. This is a hyperbolic orbit.

Problem 1.12 (J14M1)
A satellite of mass m moves in a circular orbit of radius R about a much more massive planet
(of unspecified mass). The satellite has speed v.

planet

R

v
αperiapsis

R/5
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At a specific point in the satellite’s circular orbit, the velocity of the satellite is abruptly rotated
without changing the magnitude of its velocity. (The nature of this external impulse is not
specified.) As shown in the figure, this causes the satellite to enter an elliptical orbit with its
distance of closest approach = R/5. (This point in the elliptical orbit is called the periapsis in
general.) The elliptical orbit is in the same plane as the circular orbit.

a) What is the speed vp of the satellite at the periapsis in terms of v?

b) Through what angle α was the satellite turned? See figure for the definition of α.

Originally we have mv2

R = GMm
R , so v =

√
GM
R . Since the magnitude of velocity is unchanged in

the perturbation, the energy remains

E = −GMm

R
+

1

2
mv2 = −GMm

2R
, (1.3.15)

where M is the planet mass. Therefore, the velocity at periapsis is

vp =

√
2

m

(
5GMm

R
− GMm

2R

)
= 3

√
GM

R
= 3v. (1.3.16)

This implies that the angular momentum of the new orbit is 3
5 that of the original orbit, so

α = cos−1 3
5 .

Problem 1.13 (M07M1)
A satellite in a low Earth circular orbit with Radius R0 has an orbital period T0.

a) How long does it take to transfer the satellite into a new circular orbit with a larger radius
R1 using the Hohmann transfer ellipse shown in the figure?

R0

R1

b) Suppose a large shower of asteroids (much larger than the Earth diameter) came to Earth
from a distant source, all moving with the same initial velocity v. If the areal number density
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of asteroids in the shower (the number of asteroids crossing a unit area perpendicular to the
initial velocity) is n, how many of them will hit the Earth? You can ignore the effects of
other bodies in the Solar system.

Part a) is a simple application of Kepler’s third law. The semimajor axis of the Hohmann ellipse
is 1

2(R0 +R1), so the half-period will be

Ttransfer =
1

2
T0

(
R0 +R1

2R0

)3/2

. (1.3.17)

In part b), we need to determine the periapsis of a mass with velocity v and impact parameter
b. The energy of the orbit is clearly 1

2mv
2 (where m is the asteroid mass), and the angular

momentum is mvb. If the asteroid makes its closest approach at distance d with velocity vmax,
the conservation laws require

1

2
mv2max − GMm

d
=

1

2
mv2, mvmaxd = mvb. (1.3.18)

Solving the system of equations, we find

d =

√
G2M2

v4
+ b2 − GM

v2
. (1.3.19)

The asteroid will collide with Earth if d < R (where R is the Earth radius). This gives

b2 <

(
R+

GM

v2

)2

− G2M2

v4
= R2 +

2GMR

v2
. (1.3.20)

All asteroids in this circle will impact, so we will get royally fucked over by

N = πn

(
R2 +

2GMR

v2

)
(1.3.21)

flying spheres of doom.

Gravity happens to have a 1
r potential, but we could construct a central force with any spherically

symmetric V (r) potential. Some of the properties of gravitational orbits will still hold true in this
case. Circular orbits are always possible, and Kepler’s second law holds for any orbit, since it only
relies on conservation of angular momentum. However, non-circular orbits will generically not be
conic sections, and indeed, even bound orbits may not be closed. The Bertrand theorem says that,
among power-law potentials, only for V ∝ r−1 and V ∝ r2 are all bound orbits closed.

Problem 1.14 (M15M2)
A particle of mass m moves under the influence of an attractive central force with potential V (r).

a) Suppose the particle to move in a circular orbit with angular momentum ℓ. Derive the
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condition that determines how the orbit radius rℓ depends on ℓ.

b) Now consider a small perturbation δr(t) around such a circular orbit. What is the condition
that must be met for this perturbation to oscillate with a real frequency ωℓ (in which case
the perturbation will not grow with time and the circular orbit will be stable)?

c) Now consider the special case V (r) = −k/rn with n > 0. For what values of n and ℓ are
circular orbits stable (i.e. such that ω2

ℓ ≥ 0)?

d) Are there any circumstances where the period of the circular orbit matches the period of
small radial oscillations about the circular orbit. If so, what does this equality imply for the
long-time trajectory of the particle?

The effective potential is Veff(r) =
ℓ2

2mr2
+ V (r). In a circular orbit, r must be at a critical point

of this potential, so

− ℓ2

mr3ℓ
+
dV

dr

∣∣∣∣
r=rℓ

= 0. (1.3.22)

In order for the orbit to be stable, the critical point must be a minimum, so

d2Veff
dr2

=
3ℓ2

mr4ℓ
+
d2V

dr2

∣∣∣∣
r=rℓ

> 0. (1.3.23)

The frequency will be ωℓ =
√

3ℓ2

mr4ℓ
+ d2V

dr2

∣∣∣
r=rℓ

.

Substituting V (r) = −kr−n, we find

3ℓ2

mr4ℓ
− kn(n+ 1)

rn+2
ℓ

> 0. (1.3.24)

We additionally have the criticality condition

− ℓ2

mr3
+

kn

rn+1
ℓ

= 0. (1.3.25)

Using this to eliminate rℓ, we find that circular orbits are stable for any n < 2.

The frequency of oscillations is given by

ω =
√
2− n

ℓ

mr2ℓ
, (1.3.26)

and the frequency of the orbit is Ω = ℓ
mr2ℓ

. Clearly these are equal when n = 1, implying that
for a gravitational potential V (r) ∝ r−1, bound orbits are closed.
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Problem 1.15 (J06M2)
A point massm is moving on a circular orbit of radius R under the effect of a central force directed
toward the point O on the orbit (see figure below). Its speed at point A (A is diametrically
opposite to O) is equal to vA.

O AR

a) Find the expression for the force generating this motion.

b) Using the convention that the potential energy vanishes infinitely far from the center of
attraction, compute the values of the energy and of the angular momentum for the circular
orbit.

c) Find the time needed for the point mass to complete the orbit.

The angular momentum of the orbit is L = 2mvAR, from which we can compute the velocity
at each point on the circle. A bit of geometry shows that, if we measure θ with respect to the
center of the circle with θ = 0 at A, the distance to O is 2R

∣∣cos θ2 ∣∣, and the angle between the
velocity and the vector towards O is π+θ

2 . Thus,

2mvAR = v(θ)× 2R

∣∣∣∣cos θ2
∣∣∣∣× ∣∣∣∣cos θ2

∣∣∣∣ , (1.3.27)

or
v(θ) = vA sec2

θ

2
. (1.3.28)

Conservation of energy tells us that
1

2
mv2A sec4

θ

2
+ V

(
2R

∣∣∣∣cos θ2
∣∣∣∣) =

1

2
mv2A + V (2R). (1.3.29)

If we require V (∞) = 0, this gives

V (x) = −mv2A
8R4

x4
. (1.3.30)

This implies the force is attractive with F (r) = −32mv2AR
4

x5
. The energy of the orbit vanishes.

The time needed to complete the orbit is

T =

ˆ 2π

0

dθ

v(θ)/R
=

2R

vA

ˆ π

0
cos2

θ

2
dθ =

πR

vA
. (1.3.31)
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1.4 Rigid Bodies

A lot of things in the world are big and not squishy. It is worth developing a general framework
for big things that aren’t squishy. This is called rigid body dynamics.

Point particles have three degrees of freedom, the coordinates of their position. A rigid body has
an additional three degrees of freedom specifying its orientation. In order to fully describe the
dynamics of a rigid body, we need to determine the motion of its center of mass as well as changes
in its orientation.

“A lot of problems are made easier by stabbing something” ∼ a serial killer. If we take a rigid body
and skewer it with a fixed axis of rotation, then it has only one rotational degree of freedom. To
determine how this degree of freedom responds to applied forces, we consider angular momentum,
defined for a point particle by

L = r × p, (1.4.1)

where r is position relative to some fixed point. The angular momentum changes according to

dL

dt
= r × F . (1.4.2)

The quantity on the right is torque,
τ = r × F . (1.4.3)

Just as force is an exchange of momentum, torque is an exchange of angular momentum.

We are not concerned with points so much as extended bodies, so we should determine the angular
momentum of a body with mass distribution ρ(x) rotating about a fixed axis with angular velocity
ω. The momentum of a differential mass ρ(x) dx will be p = ρ(x)ω × r dx, where r is measured
from the axis, so

L =

ˆ
ρ(x) (r × (ω × r)) dx =

(ˆ
ρ(x)r2 dx

)
ω. (1.4.4)

The quantity in parentheses is the moment of inertia, I, relative to the axis specified by ω. We
write this relation as

L = Iω. (1.4.5)

Combining this with (1.4.2), we find
τ = Iα, (1.4.6)

where α is the angular acceleration.

Computing the moment of inertia of an object is mildly annoying. Here are some common objects
and their moments of inertia.

• Uniform rod of mass m and length L about a perpendicular axis through its center of mass:
I = 1

12mL
2

• Uniform disk of mass m and radius r about a perpendicular axis through its center of mass:
I = 1

2mr
2

• Uniform ring of mass m and radius r about a perpendicular axis through its center of mass:
I = mr2
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• Uniform filled sphere of mass m and radius r about a perpendicular axis through its center
of mass: I = 2

5mr
2

• Uniform hollow sphere of mass m and radius r about a perpendicular axis through its center
of mass: I = 2

3mr
2

Furthermore, if the axis is shifted by a distance d from the center of mass, the moment of inertia
increases by md2. This is simple to prove.

The conservation of energy will also hold for rigid bodies, provided we can write down an expression
for the kinetic energy due to rotation. The squared velocity of an infinitesimal chunk of mass is
|ω × r|2 = ω2r2 (since r is perpendicular to the axis), so we find

T =
1

2
Iω2, (1.4.7)

in addition to any kinetic energy due to linear motion.

Problem 1.16 (J04M3)
A thin stick with some arbitrary linear mass density µ(x) along it is initially at rest. It has one
end on a table and makes an angle θ0 with the vertical. The stick-table contact point has an
infinite coefficient of friction.

Let m be the total mass of the stick, R be the distance from the contact point to the center of
mass, ICM be the moment about the center of mass, and g be the acceleration due to gravity.

θ

CM

R

a) The stick is released from rest and allowed to fall to the table. Find the condition that the
end of the stick initially in contact with the table does rise from the table as the stick falls.
Express the condition in terms of θ0, m, g, R, and ICM .

b) Now consider a specific mass distribution. Let the mass be uniformly distributed along the
length. For what range of initial angles θ0 will the stick eventually lift off the table?

c) Consider a different mass distribution: the mass is concentrated in two points of equal mass,
one at either end of the stick. Now for what range of initial angles θ0 will the stick eventually
lift off the table?

The stick will lift off the table if the normal force at the contact point ever vanishes. We have
three tools at our disposal with which to compute this normal force: conservation laws of energy,
linear momentum, and angular momentum. Conservation of energy gives

1

2
ICM θ̇

2 +
1

2
mR2θ̇2 = mgR(cos θ0 − cos θ). (1.4.8)
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Conservation of linear momentum in the vertical direction gives

m
d2

dt2
(R cos θ) = N −mg, (1.4.9)

where N is the normal force, and conservation of angular momentum about the pivot point gives

(ICM +mR2)θ̈ = mgR sin θ. (1.4.10)

Combining these three equations, we have

N = mg

(
1− 2

1 + α
(cos θ0 − cos θ) cos θ − 1

1 + α
sin2 θ

)
, (1.4.11)

where α = ICM
mR2 . Now we solve for N = 0. It’s a quadratic equation in cos θ, which is why I

totally didn’t use Mathematica to tell me that

cos θ =
1

3

(
cos(θ0)−

√
cos2 θ0 − 3α

)
. (1.4.12)

Thus, our constraint is 3ICM
mR2 < cos2 θ0.

If the mass is uniformly distributed, we have ICM = 1
3mR

2, so the stick will never lift off the
table (though it will come oh so close as θ0 → 0).

If the mass is concentrated at either end of the stick, we have ICM = mR2, so again the stick
will never lift off the table.

Problem 1.17 (J15M3)
A uniform cylinder of mass m and radius b rolls off a fixed cylindrical surface of radius R under
the influence of gravity. The axes of both cylinders are horizontal. The rolling cylinder starts
from the top of the fixed cylinder with a negligibly small velocity.

R

b

θ

a) If we assume the cylinder rolls without slipping, find the angle θ from the vertical when it
loses contact with the fixed cylinder.

b) In practice for a finite value of µ the cylinder will start to slip before it loses contact. Find
the angle when it starts to slip for µ = 1.
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We denote the angular velocity of the rolling cylinder by Ω. The no-slip condition is bΩ = Rθ̇,
and the center of mass velocity of the rolling cylinder is v = Rθ̇.

We need to determine when the normal force between the cylinders vanishes. The centripetal
force on the rolling cylinder is

mv2

R+ b
= mg cos θ −N. (1.4.13)

Conservation of energy tells us that

1

2

(
1

2
mb2

)
Ω2 +

1

2
mv2 = mg(R+ b)(1− cos θ). (1.4.14)

We solve and find
v2 =

4

3
g(R+ b)(1− cos θ). (1.4.15)

Setting the normal force to zero, this implies

cos θ − 4

3
(1− cos θ) = 0. (1.4.16)

The solution is
θ = cos−1 4

7
. (1.4.17)

When we turn on a frictional force F , we have

mRθ̈ = mg sin θ − F. (1.4.18)

Furthermore, F provides the torque to rotate the cylinder, so Fb = 1
2mb

2Ω̇. Therefore,

Ω̇ =
2

3

g

b
sin θ (1.4.19)

and
F =

1

3
mg sin θ. (1.4.20)

The cylinder will slip if this exceeds the maximal frictional force µN . With µ = 1, this condition
is

1

3
mg sin θ >

(
mg cos θ − mv2

R+ b

)
. (1.4.21)

Substituting the velocity from energy conservation (since energy is conserved up until the cylinder
slips), we find

7 cos θ − sin θ < 4. (1.4.22)

Solving this, we find that the cylinder first slips at

θ = cos−1 28 +
√
34

50
. (1.4.23)

Nobody said it had to be pretty.
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Serial killers are not always there to save us. Sometimes, rigid bodies haven’t been stabbed or
otherwise constrained, and they can rotate every which way. In this case, we find a more general
relationship between angular momentum and angular velocity. Rather than a scalar moment of
inertia, they are related by an inertia tensor

Iij =

ˆ
(x2δij − xixj)ρ(x) dx, (1.4.24)

and the angular momentum is given by

Li = Iijω
j . (1.4.25)

Similarly, the kinetic energy is T = 1
2Iijω

iωj .

The inertia tensor is symmetric, and so the spectral theorem implies that its eigenvectors form an
orthonormal basis. The eigenvectors are called the principal axes of the rigid body.

Problem 1.18 (J11M2)
A coin (uniform solid cylinder) of mass M and radius b rolls without slipping on a horizontal
table such that the axis perpendicular to its face makes a constant angle ϕ with respect to the
table top (see diagram). The point of contact moves in a counterclockwise (as viewed from
above) circular path of radius R with constant linear speed v. What is the relationship between
ϕ and the given quantities? In your solution, do not assume that ϕ is a small angle.

R
ϕb

We start by computing the angular momentum about the center of the circle formed by the
center of mass of the disk as it precesses. The inertia tensor of the coin is given by

Iij =
1

4
mb2

1 0 0
0 1 0
0 0 2

 , (1.4.26)

where e1 and e2 are principal axes in the plane of the disk and e3 is perpendicular to the disk.
The spin angular velocity ω = v

b is directed along −e3, so the angular momentum due to spin is

Ls = −1

2
mvbe3. (1.4.27)

The precession angular velocity Ω = v
R is directed along ẑ = cosϕe1 + sinϕe3, so the angular

momentum due to precession is

Lp =
1

4
mb2

v

R
(cosϕe1 + 2 sinϕe3). (1.4.28)



1.4. RIGID BODIES 29

In the lab frame, e1 = cosϕẑ − sinϕr̂ and e3 = cosϕr̂ + sinϕẑ. Using these identities, we find

Ltot
mvb

=
1

2

(
− sinϕ+

b

R
cos(2ϕ)

)
ẑ +

1

2

(
− cosϕ+

1

4

b

R
sin(2ϕ)

)
r̂. (1.4.29)

Since dr̂
dt = Ωθ̂, we have

dL

dt
=
mbv2

2R

(
− cosϕ+

b

4R
sin(2ϕ)

)
θ̂. (1.4.30)

We now need to set this equal to the torque. The torque comes from gravity acting on the center
of mass of the disk, and the normal force and and friction acting on its edge. The magnitude
of the gravitational and normal forces are obvious, and that of the frictional force is set by
kinematics to Ff = m(R− b sinϕ)Ω2. We have

τ = −mgb sinϕ+
mv2

R2
(R− b sinϕ)(b cosϕ). (1.4.31)

Setting this equal to dL
dt , we end up with

3R

2
cotϕ− 5b

4
cosϕ =

gR2

v2
. (1.4.32)

If we were to assume small ϕ, the first term on the left would dominate and we would have
tanϕ = 3v2

2gR .

It was a bit of a pain to convert from the body frame back to the lab frame in the previous problem.
In this case the pain was basically inevitable one way or another, but sometimes it’s very useful to
stay in the body frame. The difficulty is that the body frame is rotating with the body. So, if we
want to write dL

dt using L in the body frame, we have to account for changes in L relative to the
body as well as the rotation of the body itself.

Luckily there’s a straightforward way to do this bookkeeping. If we have a vector A affixed to a
coordinate system which rotates with angular velocity ω, it’s straightforward to see that the time
derivative of A due to frame rotation will be ω×A. If A is also changing in the rotating coordinate
system, we simply add this change in. So, we have

dA

dt
=

(
dA

dt

)
rot

+ ω ×A. (1.4.33)

Applying this to the angular momentum, we have(
dL

dt

)
rot

+ ω ×L = τ . (1.4.34)

Since we are in a body-centered frame, we can use the principal axes, so that Li = Iiωi. Carrying
out the cross product, we have the Euler equations,

I1ω̇1 + (I2 − I3)ω2ω3 = τ1,

I2ω̇2 + (I3 − I1)ω1ω3 = τ2,

I3ω̇3 + (I1 − I2)ω1ω2 = τ3.

(1.4.35)
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Problem 1.19 (J01M3)
Suppose the object can be treated as a rigid body whose principal moments of inertia obey
(IP − IE)/IE = ϵ to deduce the angular frequency Ω of free precession in terms of the angular
frequency ω of rotation.

Figure 1.6: The leading-order correction to the zero torque assumption in this problem.

This problem is considering a planet with an equatorial bulge. We can take I1 = IP and
I2 = I3 = IE , so ω1 = ω. We assume there is no torque on the planet, Figure 1.6 notwithstanding.
The first Euler equation tells us that ω̇ = 0, and the remaining two become

IEω̇2 + (IE − IP )ωω3 = 0,

IEω̇3 + (IP − IE)ωω2 = 0.
(1.4.36)

Differentiating the first equation and substituting the second, we find

ω̈2 +

(
IP − IE
IE

ω

)2

ω2 = 0. (1.4.37)

Therefore, Ω = ωϵ. Easy peasy planet squeezy.

Of course, we can also take a Lagrangian approach to problems in rigid body dynamics. This is
best illustrated by example.

Problem 1.20 (J06M1)
A gyroscope, illustrated in the figures below, is free to pivot about point O under the effect of
gravity. Its total mass is M and its center of mass is located at point P at a distance R from O.
In the reference frame (O; i1, i2, i3), of the gyroscope (see figures), its moment of inertia tensor

about point O is Î =

I 0 0
0 I 0
0 0 I3

. If (O; i, j,k) is the laboratory frame and n that axis at
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the intersection between the plane i2i3 and the plane ik, define α to be the rotation angle of
the gyroscope around i3, θ (the nutation angle) to be the angle between i3 and n and ϕ (the
precession angle) as the angle between k and n.

O

j i2

θ

n

R
i3

θ

P

Mg

α

Side View

O

k

i

i1

n

ϕ

Top View

a) Write the Lagrangian of the system and its energy in terms of the angles α, θ, ϕ, and of their
time derivatives.

b) Write the conservation laws for this system: energy and two projections of angular momen-
tum.

c) From the conservation laws deduce a closed equation for θ in the form F (θ, θ̇) = 0.

d) At time t = 0 the gyroscope is placed horizontally (θ = 0) with zero nutation angular velocity
(ϕ̇ = θ̇ = 0) and spin angular velocity α̇ = L0/I3. Show that for θ ≪ 1 the previous equation
and these initial conditions admit an approximate solution θ = θ0(1− cosωnt). Compute the
frequency ωn, the amplitude θ0, and the average precession velocity ⟨ϕ̇⟩. Find the condition
on the initial data (i.e. on L0) for which θ ≪ 1 remains a good approximation at all times.

We start by writing the angular velocity in the body frame as

ω = α̇i3 + θ̇i1 + ϕ̇(cos θi2 − sin θi3). (1.4.38)

The kinetic energy is

T =
1

2
Iijω

iωj =
1

2
I(θ̇2 + cos2 θϕ̇2) +

1

2
I3(α̇− ϕ̇ sin θ)2. (1.4.39)

The potential energy is simply −MgR sin θ. The Lagrangian is then

L =
1

2
I(θ̇2 + cos2 θϕ̇2) +

1

2
I3(α̇− ϕ̇ sin θ)2 +MgR sin θ. (1.4.40)

The energy is obtained simply by flipping a sign,

E =
1

2
I(θ̇2 + cos2 θϕ̇2) +

1

2
I3(α̇− ϕ̇ sin θ)2 −MgR sin θ. (1.4.41)
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The Lagrangian does not depend on α or ϕ, so their momenta are conserved:

Lϕ = I cos2 θϕ̇− I3 sin θ(α̇− ϕ̇ sin θ), Lα = I3(α̇− ϕ̇ sin θ). (1.4.42)

Substituting these into the energy, we find

0 =
1

2
Iθ̇2 +

(Lϕ + Lα sin θ)
2

2I
+
L2
α

2I3
−MgR sin θ − E, (1.4.43)

our desired equation for θ.

The initial conditions described correspond to an energy of E =
L2
0

2I3
and angular momenta

Lϕ = 0, Lα = L0, so we have

0 =
1

2
Iθ̇2 +

L2
0 sin

2 θ

2I
−MgR sin θ. (1.4.44)

If we take θ = θ0(1− cosωnt) and substitute while assuming small θ, we obtain

0 =
1

2
Iθ20ω

2
n sin

2 ωnt+
L2
0θ

2
0

2I
(1− cosωnt)

2 −MgRθ0(1− cosωnt). (1.4.45)

If we set ω2
n =

L2
0
I2

, this reduces to

0 =
L2
0θ

2
0

I
(1− cosωnt)−MgRθ0(1− cosωnt), (1.4.46)

and we can satisfy this by fixing θ0 = MgRI
L2
0

. Thus, we need L0 ≫
√
MgRI to make the

approximation valid. The average precession angular velocity is

⟨ϕ̇⟩ =
⟨
L0 sin θ

I cos2 θ

⟩
=
MgR

L0
. (1.4.47)

1.5 Continuum Mechanics

The most general sorts of things are big and squishy. We will take “squishy” to include elastic
solids, fluids, or really anything that doesn’t fit into point particles or rigid bodies – this section is
just a catch-all.

The simplest non-rigid bodies are springs. Springs have some natural length x0, and a quadratic
potential energy 1

2k(x−x0)
2 for displacements around that natural length. They serve as mechanical

analogies for any sort of small oscillation about an equilibrium. That is, we basically covered the
basics of springs in Sec. 1.2. It’s worth noting that spring constants add in parallel and combine
like capacitors in series.

Problem 1.21 (M06M3)
A spring has spring constant K, unstretched length L, and mass per unit length ρ (when un-
stretched). The spring is suspended from one end in a constant gravitational field, g, and
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Figure 1.7: Be prepared for squishies by learning continuum mechanics. Otherwise you’ll get stung.

stretches under its own weight. For a point whose distance from the upper end of the spring is
x when unstretched, find its distance y(x) from the upper end when the spring is stretched.

We use the fact, easy to prove, that spring constants combine like capacitors in series. This
implies that if we take a portion x of the spring, it will have an effective spring constant K L

x .
Thus, the spring will provide a restoring force

F =
KL

x
(y(x)− x) (1.5.1)

to the part of the spring below x. This should balance the gravitational force ρg
(
1− x

L

)
. This

implies
y(x) = x+

ρg

KL
x− ρg

KL2
x2. (1.5.2)

Springs make a nice model for elastic media. Elastic media tend to support waves, i.e., phenomena
which propagate through space over time. These waves will have a wavelength λ, or a wavenumber
k = 2π/λ, which sets their behavior in space; and a frequency f , or angular frequency ω, which
sets their behavior in time. The whole point of waves is that these things aren’t independent,
i.e., a given pattern in space will oscillate in a fixed way over time. This information is carried in
the dispersion relation ω(k). For example, ω(k) = ck is the dispersion relation for a medium in
which all waves propagate at speed c. If ω(k) becomes imaginary, disturbances decay rather than
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propagating.

Problem 1.22 (J05M3)
Consider wave propagation in a one-dimensional medium which consists of a large number of
pendula of mass m and length l coupled by springs of spring constant K. The distance between
adjacent masses is a0, which is also the natural length of the springs.

l l l l l l l

K K K K K K

a0

ψn−1 ψn ψn+1

g

a) Write the equation of motion for small horizontal displacements of the nth mass, ψn.

b) Derive a dispersion relation for the propagating modes.

c) What is the range of frequencies (bandwidth) over which waves can propagate along the
chain?

The pendulum acts as a spring with constant g
l , and the springs provide a force K(ψn+1−2ψn+

ψn−1). This gives an equation of motion

mψ̈n +
mg

l
ψn +K(ψn+1 − 2ψn + ψn−1) = 0. (1.5.3)

To derive the dispersion relation, assume the disturbances are described by a wave ei(kx−ωt). We
find

−mω2 +
mg

l
+ 2K(cos(ka)− 1) = 0. (1.5.4)

Solving gives a dispersion relation

ω =

√
g

l
− 4

K

m
sin2

ka

2
. (1.5.5)

We need real ω in order to get propagating waves. This implies

sin
ka

2
<

1

2

√
mg

Kl
. (1.5.6)

So long as the right hand side is less than one, it would seem that there are infinite patches of
k which satisfy this. However, the periodicity of the system implies that k ∼ k + 2π

a , so this is
not the case.
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Problem 1.23 (M99M3)
A drum can be considered to be a uniform membrane of mass per unit area ρ, stretched on a
rim of radius R. The tension τ , per unit length of the membrane, is so large that it can be
considered to be constant even when the membrane is slightly deformed from its equilibrium
(flat) shape. (If the membrane is imagined to be cut, then τ is the force which, applied to unit
length on either side of the cut will hold the membrane in its place.)

a) How far does the center of the membrane sag below the level of the rim when the drum is
held horizontal and the acceleration of gravity is g?

b) Find the lowest vibrational frequency f of the membrane. Ignore gravity in this part of the
problem. A reasonable approximate solution will be accepted. However, you may want to
know that the first zero of the Bessel function J0(x), which solves the differential equation
J ′′
0 + 1

xJ
′
0 + J0 = 0, is J0(0.766π) = 0.

It helps to imagine the drum as a grid of small springs. It is then relatively easy to see that the
net force on an infinitesimal mass ρ dA is τ∇2z, where z is the height function on the membrane.

To solve part a), we look for a solution to τ∇2z = ρg with boundary condition z = 0 on the
circle of radius R. The Laplacian in polar coordinates is

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂

∂θ
. (1.5.7)

Clearly the depression will be spherically symmetric, so we have

∂2z

∂2r
+

1

r

∂2z

∂2r
=
ρg

τ
. (1.5.8)

Clearly we should take z = ar2 + b. Indeed, we can satisfy the equation and the boundary
conditions with

z(r, θ) =
ρg

4τ
(r2 −R2). (1.5.9)

Thus, the membrane sags by ρgR2

4τ .

To determine the vibrational frequencies of the membrane, we use Newton’s second law on an
infinitesimal patch of the drum,

ρz̈ − τ∇2z = 0. (1.5.10)
We separate z as

z(r, θ, t) = R(r)Θ(θ)T (t), (1.5.11)
and obtain

T ′′

T
− τ

R′′ + 1
rR

′

R
− τ

Θ′′

r2Θ
= 0. (1.5.12)

Since the first term is the only time-dependent term, it must in fact be constant, so T (t) = eiωt

and we have
− τr2

R′′ + 1
rR

′

R
− τ

Θ′′

Θ
= ρω2r2. (1.5.13)
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Now the second term on the right is the only θ dependent term, so it also must be constant,
meaning Θ(t) = eimt with m ∈ Z for single-valuedness. At last we have the radial equation

r2R′′ + rR′ +
(
k2r2 −m2

)
R = 0. (1.5.14)

where k2 = ρ
τ ω

2. This is the Bessel equation in the dimensionless variable kr, and we will
need to satisfy the boundary condition at kR. The first zeroes of the Bessel functions Jm(x) are
increasing in m, so we obtain the lowest frequency ω by choosing m = 0, such that R(r) = J0(kr).
We then have k = 0.766π

R , so the lowest frequency is

ω = 0.766π

√
τ

ρR2
. (1.5.15)

So much for springs and bendy solids. Now we’ll move on to fluids. Very general fluids are described
by the Navier-Stokes equations, which are famously difficult. Usually we can get away with using
something like the Euler equations, which describe incompressible and inviscid (zero viscosity)
fluids. There is the conservation of mass, which takes the form of the continuity equation

∂ρ

∂t
+ u · ∇ρ = 0, (1.5.16)

with ρ the density and u the velocity field. Incompressibility implies that the fluid isn’t bunching
up anywhere, so

∇ · u = 0. (1.5.17)

And finally, Newton’s second law becomes a differential equation for the velocity field,

∂u

∂t
+ u · ∇u = −∇p

ρ
+ g, (1.5.18)

where p is the pressure and g is an acceleration coming from a force f = ρg. This alone is sometimes
called Euler’s equation.

Problem 1.24 (J07M3)
An explosion at time t = 0 in an ideal (zero viscosity) incompressible fluid produces a perfectly
spherically symmetric expanding bubble of vacuum with radius R(t) (neglect the effect of any gas
or vapor inside the bubble). The bubble expands to maximum radius Rmax and then collapses.
The pressure in the fluid far from the bubble is P∞, and the mass density of the fluid is ρ. Neglect
any effects of surface tension or gravity; assume the bubble remains spherically symmetric at all
times, and that the velocity field in the fluid is purely radial.

a) Obtain an expression for the velocity field inside the fluid, and hence get an expression for
the total energy (kinetic + potential) of the fluid in terms of R and dR/dt.

b) Obtain an equation of motion for the bubble’s radius R(t) of the form

dR

dt
= f(R). (1.5.19)

What is the function f(R)?
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c) How long does it take for the bubble to collapse after it reaches its maximum radius? Your
answer can contain a finite dimensionless integral whose value you have not obtained.

d) What is the asymptotic behavior of R(t) in the final moments of the bubble’s collapse when
R≪ Rmax?

We know the velocity field is radial, with magnitude is dR
dt at the boundary and zero at infinity.

The incompressibility equation is

∇ · u =
1

r2
∂2

∂2r
(r2ur) = 0. (1.5.20)

This implies u = dR
dt

R2

r2
r̂. The kinetic energy is

ρ

2

ˆ ∞

R

(
dR

dt

R2

r2

)2

(4πr2) dr = 2ρπR3

(
dR

dt

)2

. (1.5.21)

The potential energy comes from the pressure in the fluid. We don’t need to worry about
pressure at finite distance, because it contributes equally to the potential energy before and
after the explosion. All that matters is the net volume 4π

3 R
3 which is displaced to infinity, giving

U =
4π

3
R3P∞. (1.5.22)

In total we have

E =
4π

3
R3

(
P∞ +

3

2
ρ

(
dR

dt

)2
)
. (1.5.23)

To fix the value of the energy, we look at its value at R = Rmax, 4π
3 R

3
maxP∞. It follows that

dR

dt
=

√
2

3

P∞
ρ

(
R3

max
R3

− 1). (1.5.24)

The time it takes to collapse is

T =

ˆ Rmax

0

dR

dR/dt
=

√
3ρ

2P∞
Rmax

ˆ 1

0

u3/2du√
1− u3

. (1.5.25)

During the death throes of the bubble, when R ≪ Rmax, we have dR
dt ∼ −R−3/2, which implies

R ∼ (T − t)2/5.

Problem 1.25 (J08M3)
When we derive Newton’s equations of motion from a Lagrangian or Hamiltonian, the equations
are invariant under time reversal, so that if x(t) is a solution, so is x(−t). If we add terms
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corresponding to damping or viscosity, the invariance is broken, and motions become obviously
irreversible. Strangely, a form of reversibility is restored for fluid motion in the limit that
viscosities are very large.

Consider a fluid with viscosity η and density ρ, and assume that it is incompressible. The
equations of motion are the Navier-Stokes equations,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ∇p+ η∇2v, (1.5.26)

∇ · v = 0, (1.5.27)

where v(x, t) is the velocity of the fluid element at position x at time t, and p(x, t) is the
pressure. To be concrete, imagine that we have a layer of fluid between two (large) parallel
plates, a distance d apart.

a) Let one of the plates move at velocity v0, with the other plate held fixed. Now the natural
unit of length is d, the natural unit of velocity is v0, and the natural unit of pressure is
ρv20. Show that, in these natural units, a single term in the Navier-Stokes equations becomes
dominant at large viscosity. Since viscosity has units, “large” means large relative to some
characteristic scale ηc, which you should determine.

b) In this limit of large viscosity (usually called the “low Reynolds number” limit, Re ≡ ηc/η),
show that if the plate moves for a time T with velocity v0, and then with velocity −v0 for an
equal time T , all elements of the fluid will be returned exactly to their initial locations, so
that motion is reversible. You should show this explicitly for the problem of fluid between two
plates (by solving the equations), and give a more general argument (which doesn’t require
solving the equations).

We start by de-dimensionalizing the Navier-Stokes equations. The unit is pressure per length,
so we should divide by ρv20

d and define V = v
v0

, T = tv0
d , ∇ = d∇, P = p

ρv20
, and η = η

ηc
where

ηc = ρv0d. We then have
∂V

∂T
+ (V · ∇)V = ∇P + η∇2

V . (1.5.28)

Naturally, for η ≫ 1, the viscosity term dominates.

In this limit, the velocity field should solve the Laplace equation at any given time. It is well-
known that the Laplace equation with Dirichlet boundary conditions has a unique solution.
Furthermore, the equation is linear, and so the velocity field in the bulk will depend linearly on
the velocity at the boundary. From this it follows that if we move the boundary in a closed path,
every element of fluid will likewise move in a closed path.

To see this explicitly in the case of the plates, let the top plate move in the x direction and let
the plates be separated in the y direction. We solve to find

Vx = Y 2, (1.5.29)

for Y = y/d. Restoring dimensions, a fluid element at height y will move v0 y
2

d2
T to the right (no

relation to de-dimensionalized T ), and then move the same distance to the left.
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Figure 1.8: Sky of blue and sea of green, in our yellow submarine.

1.6 Non-Inertial Frames

As the great physicist Ringo Starr once said, we all live on a yellow submarine. Some people think
this is a statement about the peculiarities of human circumstance, and the need for companionship
in this strange experience of life. Fools! “Yellow Submarine” is clearly a song about how the laws
of physics should hold in any frame of reference, so long as we make the appropriate changes to
dynamic quantities to account for the change of frame.

Newton’s laws hold for any “inertial frame,” a concept which is ill-defined and doesn’t really exist,
but you know an inertial frame when you see one. For non-inertial frames, we need to add additional
forces to explain away accelerations we observe due to our own accelerating point of view. Some
people call these “fictitious forces,” but this is an unwarranted attack on Ringo Starr (and also on
Einstein and the principle of general relativity).

The simplest case is a uniformly accelerating frame. If our frame has acceleration a, then any
acceleration a′ in an inertial frame is recorded as a′ − a in the accelerated frame, so we need to
add a force −ma to account for the change.

A more interesting case is when the frame is rotating. The principle is the same, but now we need
to account for changes in our basis vectors. From (1.4.33), we have the velocity transformation

v = vrot + ω × r. (1.6.1)

Taking another time derivative and using (1.4.33) gives

arot = a− 2ω × v − ω · (ω × r). (1.6.2)

The second term on the right is the Coriolis force, and the third term is centrifugal acceleration.
In situations where ω is small compared to relevant frequency scales, such as for the rotation of the
Earth, the Coriolis term is dominant over the centripetal term.

Problem 1.26 (M02M3)
A particle is dropped vertically in the Earth’s gravitational field at latitude λ. Assume it feels
an air drag F = kv2. Due to the Coriolis effect, it will undergo a horizontal deflection.
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a) Initially neglect the Earth’s rotation. Find an explicit equation for the vertical velocity.

b) Working at leading order in the Earth’s angular velocity ω, and using the result you just
derived, find the horizontal velocity as a function of time.

c) What is the velocity at t≫
√

m
gk?

If we ignore the Earth’s rotation, we have

mv̇z = mg − kv2z , (1.6.3)

implying

vz(t) =

√
mg

k
tanh

(√
kg

m
t

)
. (1.6.4)

The magnitude of the Coriolis acceleration will be 2ω × v = 2ωvz(t) cosλ, so

v̇h(t) = 2ω cosλ

√
mg

k
tanh

(√
kg

m
t

)
. (1.6.5)

Carrying out the integral, we find

vh(t) = 2
mω

k
cosλ ln cosh

(√
kg

m
t

)
. (1.6.6)

At very large times, the vertical velocity is asymptotic to
√

mg
k , whereas the horizontal velocity

grows linearly with t as 2ωt
√

mg
k . Thus, if a particle falls for a very long time – several days, so

that ωt ≫ 1 – it will begin moving almost entirely horizontally. The total speed will approach√
mg
k (4ω2t2 + 1).

Problem 1.27 (J12M3)
An upright cylindrical bucket has radius R and its rim is at height H. This bucket is placed
on a horizontal surface and filled to a height h < H with incompressible water. The bucket is
then rotated at an angular frequency ω about a vertical axis that goes through the center of the
bucket. Let g be the acceleration due to gravity, and assume that the water is simply rotating
with the same angular velocity as the bucket.

a) Assuming that ω is small enough that the water does not reach the rim of the bucket or
reveal the bottom of the bucket, find an expression for the height of the water’s surface as a
function of the radial distance from the central axis of rotation.
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b) Quantitatively, what are the conditions on ω such that water neither spills over the rim of
the bucket nor reveals the bottom of the bucket?

We are assuming the water rotates with the bucket, so v = 0 in the rotating frame and there
is no Coriolis force. We only need to worry about the centrifugal force, which will be directed
outwards with magnitude ω2r, where r is the distance from the rotation axis. We can represent
this with a potential −1

2ρω
2r2. The surface of the water will be at an equipotential surface with

respect to the total potential ρgh− 1
2ω

2r2, which gives

z(r) =
ω2

2g
r2 + z0. (1.6.7)

To determine the constant z0, we use the conservation of the water volume, assuming z0 ≥ 0.
We have

πR2h =

ˆ R

0
z(r)(2πr) dr =

πω2R4

4g
+ πR2z0. (1.6.8)

Solving, we find z0 = h − ω2R2

4g , which means the greatest height is z(R) = ω2R2

4g . In order to
keep the the bottom of the bucket covered and to keep the water in the bucket, we need

ω <

√
4g

R2
min(h,H − h). (1.6.9)

The hydrostatic equilibrium condition used in the previous problem, in which the surface of a fluid
traces an equipotential surface, can be useful in more complicated scenarios.

Problem 1.28 (J01M2)
The following two problems relate to a calculation of the angular frequency Ω of free precession of
a planet or star whose angular frequency of rotation about its axis is ω. The problems themselves
are independent.

Suppose that the density ρ of the object is uniform, and that its shape can be determined by the
condition of hydrostatic equilibrium. Deduce an expression for the (small) quantity ϵ(ω,M, rp)
that relates the equatorial radius rE to the polar radius rP by the form rE = rP (1 + ϵ), where
M ≈ 4πρ(r3P )/3 is the mass of the object.

The rotation of the Earth about its axis generates a centrifugal potential −1
2ρω

2s2, where s is the
distance from the rotation axis. There is also the potential due to gravity, which we approximate
by −GM

r . The equatorial bulge will be such that the increase in gravitational potential balances
the negative centrifugal potential. Since s = r at the equator, this condition gives

GM

rP
− GM

rE
=

1

2
ω2r2E . (1.6.10)



42 CHAPTER 1. MECHANICS

Assuming rE = rP (1 + ϵ) with small ϵ, this becomes

GM

rP
ϵ =

1

2
ω2r2P (1 + ϵ)2, (1.6.11)

so
ϵ =

g − ω2rP
ω2rP

−
√

(g(g − 2rPω2)

rPω2
, (1.6.12)

where g = GM
r2P

. We have chosen this root because it is very small for g ≫ ω2rP , which is the

case in practice. Indeed, define α = g−ω2rP
ω2rP

. Then we have

ϵ = α−
√

(α+ 1/2)(α− 1/2) ≈ 1

8α
=

ω2rP
2(g − ω2rP )

≈
ω2r3P
2GM

. (1.6.13)

Rotating frames are especially well-suited for problems involving orbits because everything is going
in a circle anyway. The competition between centrifugal forces and gravitational forces is behind
the effective potential given in Sec. 1.3, and we can address it more explicitly by moving to a frame
corotating with an orbiting body.

Problem 1.29 (M05M3)
The orientation of a satellite in low-Earth orbit can be stabilized with gravity gradients. Let the
satellite be a long cylinder of length L and radius a (a≪ L). The distribution of the mass m is
uniform within the cylinder. The satellite is in a circular orbit around Earth with a period Tor.
Express your answers to parts b), c) and d) in terms of Tor, L, and a.

Earth

v

a) What is the stable equilibrium orientation, for which the satellite appears to be at rest in a
coordinate system rotating with the same angular velocity as the orbital motion?

b) What is the period Tπ of small oscillations about equilibrium in the orbital plane?

c) What is the period Tσ of small oscillations about equilibrium perpendicular to the orbital
plane?

d) The satellite is given a small angular speed ω around its long axis. To first order in ω, find
the new stable equilibrium orientation of the satellite, where the direction of the long axis
appears to be fixed in the rotating coordinate system.
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In a frame rotating with the satellite, it has no velocity, so there is no Coriolis force. We compute
the energy of the satellite when it is tilted at angle θ with respect to a tangent to its orbit. Let
r be the distance between the center of masses of the satellite and the Earth. The potential
energy due to gravity is

Ug = −
ˆ L/2

−L/2

GM(m/L)√
r2 + x2 + 2rx sin θ

dx ≈ −GMm

r

(
1 +

L2

24r2
(3 sin2 θ − 1)

)
, (1.6.14)

and the part due to the centrifugal potential is

Uc =

ˆ L/2

−L/2

(m/L)ω2(a2 + x2 + 2ax sin θ)

2
dx =

1

2
mω2r2

(
1 +

L2

24r2

)
. (1.6.15)

There is no θ-dependence, so the centrifugal potential is unimportant in this case. The angular
velocity of the orbit satisfies ω2 = GM

a3
, so the θ-dependent part of the potential is

U(θ) = −GMmL2

8r3
sin2 θ. (1.6.16)

This implies that the satellite will be in equilibrium at θ = π, oriented vertically.

The moment of inertia of the satellite is 1
3mL

2. Thus, the period for small oscillations in the
orbital plane is

Tπ = 2π

√
12r3

GM
=

2√
3
Tor. (1.6.17)

For oscillations perpendicular to the orbital plane, the form of the centrifugal potential will
change slightly. We have

U ′
c(ϕ) =

ˆ L/2

−L/2

(m/L)ω2(r + x sinϕ)2

2
dx =

1

2
mω2r2

(
1 +

L2

12r2
sin2 ϕ

)
. (1.6.18)

The total potential for an angle ϕ perpendicular to the orbital plane is then

U ′(ϕ) = −GMmL2

12r3
sin2 ϕ, (1.6.19)

giving a period
Tσ =

√
2Tor. (1.6.20)

To treat the spinning satellite, we compute the kinetic energy. The angular velocity will be

(Ω sinϕ+ ω)e1 +Ωcosϕe2, (1.6.21)

where Ω =
√

GM
r3

is the orbital angular velocity, e1 is directed along the satellite, and e2 is
perpendicular to it. The corresponding moments of inertia along these principal axes are 1

2ma
2

and 1
3mL

2, so the kinetic energy of rotation is

T =
1

4
ma2(Ω sinϕ+ ω)2 +

1

3
mL2Ω2 cos2 ϕ. (1.6.22)
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The θ-dependent pieces of the energy are

U =
ma2

4
(Ω2 sin2 ϕ+ 2ωΩsinϕ) +

mL2

3
Ω2 cos2 ϕ− mΩ2L2

12
sin2 ϕ. (1.6.23)

Assuming small ϕ, this reduces to

U =
mΩ2

4

(
a2 − L2

3

)
ϕ2 +

ma2

2
ωΩϕ. (1.6.24)

This is minimized by the equilibrium angle

ϕ =
ω

Ω

(
L2

3a2
− 1

)−1

. (1.6.25)

Problem 1.30 (M03M1)
The Earth is in a circular orbit of angular frequency ω about the Sun. The Sun is so much more
massive that the Earth that, for our purposes, it may take to sit at rest at the center of our
coordinate system. Lagrange discovered that there exist a certain number of equilibrium points
at which an artificial satellite of negligible mass can orbit the Sun with the same frequency ω
as the Earth (while maintaining a fixed distance from the Earth and the Sun). Such orbits
are ideally suited for space-based observatories of various kinds. We will explore some of the
properties of the ‘Lagrange points’ in this problem.

a) Consider points on the line that runs from the Sun through the Earth. This line is of course
stationary in the reference frame that rotates with the Earth in its orbit. Show that there is
one point on this line outside the Earth’s orbit where a test particle may sit at equilibrium
in the rotating frame. This point is commonly designated as the L2 Lagrange point. (There
is a similar Lagrange point, L1, inside the Earth’s orbit as well.)

b) Give an approximate expression, correct to leading order in the small quantity β = Me/Ms,
for the distance from the Earth to the L2 Lagrange point described above. Express your
answer in terms of the masses and R, the Earth-Sun distance. The Wilkinson Microwave
Anisotropy Probe (WMAP) is stationed at L2: using β ≈ 3 × 10−6 and R = 1.5 × 108 km,
find the distance from Earth to WMAP.

c) Determine whether the L2 equilibrium point is stable or unstable against small perturbations
in position along the Earth-Sun line.

We use a frame which co-rotates with the Earth around the Sun. The potential for r > R can
then be given in three pieces:

U(r) = −GMsm

r
− GMem

r −R
− 1

2
mω2r2. (1.6.26)
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Setting the derivative to zero, we will find equilibria wherever

GMs

r2
+

GMe

(r −R)2
− ω2r = 0. (1.6.27)

At r = R+ ϵ, the first two terms are very large and decreasing, while the third term is negative
and decreasing. Thus, as we increase r to infinity, we will cross only one zero, which is the L2
point.

To find the distance to this point, u = r −R, we need to solve

1

(R+ u)2
+

β

u2
− R+ u

R3
= 0, (1.6.28)

where we have used ω2 = GMs
R3 to eliminate ω. Since β is small, we can rearrange this to read

(
1 +

u

R

)3
= 1 + β

R2

u2

(
1 +

u

R

)2
(1.6.29)

and then take the approximate solution

u =

(
β

3

)1/3

R+O
(
β2
)
. (1.6.30)

Using actual numbers, like godless heathens, we find that WMAP is about 1.5× 106 km away.

To determine stability, we look at the second derivative of the potential,

GMs

R3

(
− 2

(1 + u/R)3
− 2β

(u/R)3
− 1

)
. (1.6.31)

Every term is negative, so this Lagrange point is unstable. Apparently satellites at L2 have
to undergo constant course corrections to keep themselves from falling off the top of the hill.
Sisyphus is real and he’s in the sky.

1.7 Additional Problems

Problem 1.31 (J08M1)
A plane pendulum consists of a bob of mass m suspended by a massless rigid rod of length l
that is hinged to a sled of mass M . The sled slides without friction on a horizontal rail. Gravity
acts with the usual downward acceleration g.
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M

l

m

θ
g

a) Taking x and θ as generalized coordinates, write the Lagrangian for the system.

b) Derive the equations of motion for the system.

c) Find the frequency ω for small oscillations of the bob about the vertical.

d) At time t = 0 the bob and the sled, which had previously been at rest, are set in motion by
a sharp tap delivered to the bob. The tap imparts a horizontal impulse ∆P = F∆t to the
bob. Find expressions for the values of ẋ and θ̇ just after the impulse.

The position of the bob is (x+ l sin θ,−l cos θ). Therefore, the Lagrangian is

L =
1

2
Mẋ2 +

1

2
m(ẋ2 + l2θ̇2 + 2lẋθ̇ cos θ) +mgl cos θ. (1.7.1)

Therefore, the equations of motion are

d

dt

(
(M +m)ẋ+mlθ̇ cos θ

)
= 0,ml2θ̈ +mlẍ cos θ −mlẋθ̇ sin θ +mgl sin θ = 0. (1.7.2)

In matrix form and assuming small angles,(
M +m ml
ml ml2

)(
ẍ

θ̈

)
+

(
0 0
0 mgl

)(
x
θ

)
. (1.7.3)

We have (
M +m ml
ml2 0

)−1(
0 0
0 mgl

)
=

(
0 −g/l
0 (1 +m/M)g/l

)
, (1.7.4)

The frequency is therefore ω =
√(

1 + m
M

) g
l . The zero mode corresponds to uniform acceleration

of the sled.

The horizontal force acting on the sled due to the bob is proportional to sin θ. Thus, during the
tap the force vanishes, and thus the sled is not accelerated. All the momentum goes into the
bob, so we have θ̇ = F∆t

mℓ immediately after the tap.
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Problem 1.32 (J00M3)
A mass m1 slides without friction on a horizontal table. The mass is tied to a string with
negligible mass that passes without friction through a small hole. A mass m2 is tied to the other
end of the string. The uniform gravitational acceleration g is normal to the table.

r(t)

m1

m2

g

The orbit of m1 is only slightly perturbed from circular. The masses m1 and m2 are chosen so
the orbit is closed, with one maximum and one minimum of the distance r(t) of m1 from the
hole, when computed to first order in the departure from a circular orbit. Find m2 in terms of
the other parameters.

The effective potential is given by

Veff(r) =
L2

2m1r2
+m2gr. (1.7.5)

The minimum is at r0 =
(

L2

m1m2g

)1/3
. Clearly the m2gr potential will not contribute a second

derivative, so we have

Veff(r) ≈ Veff(r0) +
3L2

m1r40
(r − r0)

2. (1.7.6)

The resulting restoring force acts on the combined mass m1 + m2. Thus, the frequency of
oscillations about this equilibrium is

ω =
√
3

L√
m1(m1 +m2)r20

. (1.7.7)

In order to have an orbit of the form described, we need ω = L
m1r20

. This implies m2 = 2m1.

Problem 1.33 (J03M1)
This problem is about scattering by an attractive potential.

a) Consider a particle with energy E and z < 0 approaching the z = 0 plane at an angle θ1 to
the z-axis. Find the angle θ2 that it makes to the z axis after passing through the z = 0
plane if V = 0 for z < 0 and V = −V0 (constant) for z > 0.
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b) Apply your result to a uniform beam of particles scattered by the attractive potential

V (r) = −V0 r < a, V (r) = 0 r > a. (1.7.8)

Determine the differential cross section. (Recall that the definition of the differential cross
section is dσ

dΩ = b
sin θ

db
dθ , where b is the impact parameter and θ the scattering angle.)

This form of scattering is effectively the same as refraction. Momentum in the plane is conserved,
and we know the total speed before and after the scattering, so√

2(E + V0)

m
sin θ2 =

√
2E

m
sin θ1 =⇒ sin θ2 =

√
1

1 + V0/E
sin θ1. (1.7.9)

When a particle at impact parameter b strikes the sphere, it will have sin θ1 =
b
R , so

θ2 = sin−1

(
b

R

√
1

1 + V0/E

)
. (1.7.10)

The deflection of the particle is θ1− θ2. If we continue its trajectory through the sphere, we find
that it must strike the interior wall at the same angle θ2, which means it will exit at angle θ1.
Thus, the total deflection of the particle due to the potential is θ = 2(θ1 − θ2), or

θ = 2

(
sin−1 b

R
− sin−1

(
b

R

√
1

1 + V0/E

))
. (1.7.11)

Now we solve for b and differentiate with respect to θ. God have mercy on my soul. Actually,
it’s not so bad – rearranging and taking a sin, we get√

1− b2

R2
sin

θ

2
− b

R
cos

θ

2
= −n b

R
, (1.7.12)

where we have defined n =
√

1
1+V0/E

. Playing with this a bit more, we get

b =
R sin θ

2√
n2 − 2n cos θ2 + 1

, (1.7.13)

and so
db

dθ
=

1

2

(
n2 + 1

)
R cos θ2 − nR

(
1 + cos2 θ2

)(
n2 − 2n cos θ2 + 1

)3/2 . (1.7.14)

This gives a differential cross section of

dσ

dΩ
=

R2

4 cos θ2

(
n2 + 1

)
cos θ2 − n

(
1 + cos2 θ2

)(
n2 − 2n cos θ2 + 1

)2 . (1.7.15)



Chapter 2

Electromagnetism

Look at the person to your left. Now look at the person to your right. According to the latest
statistics, there’s a 100% chance you just observed electromagnetic fields, twice.

In this chapter we’ll be concerned with James Clerk Maxwell’s equations, using terminology and for-
malism largely invented and promoted by Oliver Heaviside, involving contributions from a number
of other scientists, many of whom had beards somewhere on the wide-ranging Heaviside-Maxwell
spectrum. One of particular interest is Hendrik Lorentz; even modern experiments cannot rule out
the hypothesis that Lorentz was Santa Claus, and used his namesake contraction effect to squeeze
down chimneys and deliver presents. I mean, look at him.

Figure 2.1: (Left) Oliver Heaviside, who formulated electrodynamics in terms of fields and fluxes,
and who owned some kind of beard trimming device; (Center) James Clerk Maxwell, who was
the first to write down equations equivalent to the modern theory of electrodynamics, and who
owned no such beard trimming device; (Right) Hendrik Lorentz, a.k.a. Santa Claus, who helped to
understand the relativistic nature of electrodynamics and who gives his name to the Lorentz force
law.

In 2.1, we’ll look at electric fields on their own, and in 2.2, we’ll do another one-on-one session with
magnetic fields. In 2.3 we consider what happens when these ghosty fields get involved with actual
stuff, and in 2.4 we’ll allow the fields to get involved with each other. If the relationship works out,
the fields form light, so we’ll discuss radiation in 2.6.

49
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2.1 Electrostatics

Stuff in the world can be charged, and opposite charges attract while like charges repel. Much like
gravity, this attraction follows an inverse square law, in this case called Coulomb’s law:

F =
q1q2
r2

r̂. (2.1.1)

This force comes from the potential energy

U(r) =
q1q2
r
. (2.1.2)

Note that the potential is positive for like charges and negative for opposite charges.

With gravity, we found it useful to normalize the potential energy between two masses by the mass
of one of them, in order to end up with a gravitational potential that was intrinsic to the other
mass. We can do the same here, normalizing by charge. The electric potential due to a charge q is
given by

ϕ(r) =
q

r
. (2.1.3)

Already at this point, it’s time for a heart-to-heart about units. Some readers may have expected
to see some factors of 4πϵ0 in these equations. Such factors will not be appearing. We are working
in Gaussian units, the morally superior alternative to SI units. In this system, charge has units of
(length)3/2(mass)1/2(time)−1, so that (2.1.1) is dimensionally correct all on its own.

Note that this is distinct from so-called natural units, where certain legitimate physical parameters
are taken to be 1 for the sake of expediency, and restored based on dimensional considerations
later, so that in the meantime equations appear to have dimensional issues. This is not a mere
calculation technique, and we are not saving our ϵ0’s for later. They will never appear, because they
are stupid and unnecessary. Same with the µ0’s. Indeed, that’s the stupidest part, having different
constants for electricity and magnetism – that’s like measuring north-south distances in furlongs
and east-west distances in kilometers. There is no situation, not for theory or for experiment, where
that kind of shenanigan makes any sense whatsoever.

Also, for what it’s worth, the SI system is a historical accident but not in the way you might think.
The SI system was adopted in the early 20th century, whereas Gauss had this system worked out in
the mid-19th. The problem was that someone else came along and made some competing system,
and then there was confusion between the two systems, and so someone proposed dreaming up a
whole new unit to somehow resolve the confusion. And apparently that argument won the day.

Saltiness aside, let’s continue. From the electric potential, which is a potential energy per unit test
charge, we can take a negative gradient to derive the electric field,

E = −∇ϕ, (2.1.4)

which is a force per unit charge. We could have defined an analogous field for gravity, but we didn’t.
That’s because the electric field E will actually obey interesting dynamics, whereas in gravity we
have to work much (much) harder to work out the dynamical degrees of freedom.

We defined the potential for a point particle, but the real world is better described by charge
distributions ρ. The potential in (2.1.3) satisfies ∇2ϕ = −4πqδ(x), so by analogy we have

∇ ·E = 4πρ. (2.1.5)
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Figure 2.2: If a negative image charge is placed opposite the real positive charge, the resulting
electric field is perpendicular to the conductor.

This is known as Gauss’s law.

Gauss’s law is known to mathematicians as a Poisson equation. Since 1
4πr is a Green’s function for

the Laplace operator, the solution is

ϕ(r) =

ˆ
dr′

ρ(r′)

4π|r − r′|
. (2.1.6)

This is sometimes useful, sometimes not, since we don’t always know the charge distribution a
priori. But it does tell us that the solution is unique (so long as we fix the boundary condition
ϕ = 0 at infinity).

Uniqueness of solutions means in particular that, if we can dream up just one solution which works,
then we’re done. This can be especially useful in the presence of conductors. We’ll deal with matter
in detail in Sec. 2.3, but conductors are simple: they let charge move all it wants. If an electric field
impinges on a conductor, the charge in the conductor will move in response to it. This continues
until the electric field vanishes within the conductor and is perpendicular to its surface, so that
the charges in the conductor are no longer pushed around. Put another way, in equilibrium the
potential should be constant throughout the conductor.

If we have a point charge sitting next to a conductor, then the charge will move all around in
the conductor until the electric field is perpendicular to its surface. We don’t know what that
charge configuration will look like, so (2.1.6) can’t help us. But if we can make a really good guess,
uniqueness of solutions can help us. For a conductor which forms an infinite plane, and a charge
sitting above it, a really good guess would be to forget the conductor, and in its place, imagine
an opposite charge sitting on the opposite side of the plane of the conductor. We would then get
an electric field above the conductor which is everywhere perpendicular to it (see Figure 2.2. This
satisfies the boundary conditions, so by uniqueness, it’s correct.

Problem 2.1 (M09E3)
A point charge Q1 is located a distance d from the center of a thin, conducting spherical shell
of radius R (d > R).
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a) If the conducting sphere were temporarily grounded, what would be the magnitude Q0 and
distance from the origin d0 of the image charge?

b) Now the ground connection is removed and the conducting sphere is insulated from the
ground, leaving the total net charge Q0 distributed on the surface. If an additional amount
of charge ∆Q = Q−Q0 is placed on the surface of the conducting sphere, how will the excess
charge distribute itself on the surface?

c) What must the net charge on this shell Q be so that there is no net force between the point
charge Q1 and the shell?

If the method of images is to work at all, we at least need to be able to set V = 0 on the
conductor along the line formed by the origin and the charge Q1. This gives two equations for
the two points on the sphere:

Q1

d−R
+

Q0

R− d0
= 0, (2.1.7)

Q1

d+ 2R
+

Q0

R+ d0
= 0. (2.1.8)

Solving these equations gives

Q0 = −R
d
Q1, d0 =

R2

d
. (2.1.9)

We now check that such an image charge actually works, in the sense that it gives V = 0 on the
entire sphere. We can work in spherical coordinates where θ = 0 is the direction of Q1. Then
the potential on the sphere is

V (θ) =
Q1√

R2 + d2 − 2Rd cos θ
+

Q0√
R2 + d20 − 2Rd0 cos θ

. (2.1.10)

Substituting the image charge data, this quickly simplifies to zero, so indeed we have found an
image charge presentation of the solution to the problem.

We can use a similar trick to answer the second part. We know that the charge Q0 is distributed
on the surface in some oh-so-special way as to make the potential uniform on the whole sphere.
If we added some extra charge ∆Q uniformly to the surface, then the potential would still be
uniform. By uniqueness, the excess charge will indeed be uniformly distributed.

With no excess charge, the point charge would feel the force it would feel due to the image
charge,

F = − Q0Q1

(d− d0)2
= −Q2

1

Rd

(d2 −R2)2
. (2.1.11)

In order to make the net force zero, we should repel F by the same amount. A uniform charge
∆Q on the sphere will have the same electric field as a point charge ∆Q at the origin, so

Q1∆Q

d2
= Q2

1

Rd

(d2 −R2)2
=⇒ ∆Q = Q1

Rd3

(d2 −R2)2
. (2.1.12)

Thus, the net charge is

Q = Q0 +∆Q = Q1
R

d

(
1

(1−R2/d2)2
− 1

)
. (2.1.13)
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Problem 2.2 (J03E2)
Find the electric potential in cylindrical coordinates ϕ(r, θ, z) when a charge q is located at
(r0, z0 > 0) and there is a grounded conducting plane at z = 0 that has a conducting hemispher-
ical boss of radius R < b =

√
r20 + z20 whose center is at the origin. A side view of the boss and

conducting plane is shown in the picture below. What is the electrostatic force on the charge q
in part b) for the case that r0 = 0?1

z

r

r b

We can start by putting an image charge − r
bq at a distance r2

b from the origin, as in the previous
problem. We know this gets us V = 0 on the hemispherical boss, but then we have to worry
about the plane. Since Gauss’s law is linear, we can think of the total field as a superposition
of the field due to the original charge and the field due to the image charge. This suggests that
we place two more image charges below the plane. In total, we have four charges: q at (r0, z0),
− r
bq at

(
r2

b
r0
b ,

r2

b
z0
b

)
, −q at (r0,−z0), and r

bq at
(
r2

b
r0
b ,−

r2

b
z0
b

)
. The potential due to the first

charge is
ϕ1(r, θ, z) =

q√
r2 + r20 − 2rr0 cos θ + (z − z0)2

, (2.1.14)

and the total potential can be found by adding terms of this form.

1This problem had an additional part which was nearly identical to the previous problem, and so it is omitted
here.
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Figure 2.3: The field lines for the charge and image charges in this problem, with the full ϕ = 0
equipotential drawn.

When r0 = 0, all these charges end up on the z axis, so it’s simple to compute the force on the
actual charge:

F = qẑ

(
− r

z0
q

1

(z0 − r2/z0)2
+

r

z0
q

1

(z0 + r2/z0)2
− q

1

4z20

)
(2.1.15)

= − q2

4z20
ẑ

(
16(r/z2)

2

(1− r4/z40)
2
+ 1

)
. (2.1.16)

Problem 2.3 (M06E1)
An uncharged metal sphere of radius R is placed inside an otherwise uniform electric field
E = E0ẑ.

a) Find the electrostatic potential in the region outside the sphere.

b) Find the induced charge density on the surface of the sphere.

The electric field between two opposite charges is close to uniform, as shown in Figure 2.2. Its
magnitude, if the charges are at (0, 0,±d), is

|E| = 2q

d2
. (2.1.17)

So, we could think of the uniform field E = E0ẑ as the result of a positive charge q at (0, 0,−d)
and a charge −q at (0, 0, d), where we take the limit as d→ ∞ and keep 2q

d2
= E0.

With this approach, we can use image charges to find the potential outside the sphere. Let’s pre-
tend for a moment that the sphere is grounded. The image charges will be located at (0, 0,±R2/d)
and will have charges with magnitude qRd . The total potential will be

ϕ(r, θ, z) =
q√

r2 + (z + d)2
− q√

r2 + (z − d)2
− qR/d√

r2 + (z +R2/d)2
+

qR/d√
r2 + (z −R2/d)2

.

(2.1.18)

Expanding this to leading order in 1
d , we find

ϕ(r, θ, z) = −2q

d2
z

(
1− R3

(r2 + z2)3/2

)
. (2.1.19)

In the limit d→ ∞, this becomes

ϕ(r, θ, φ) = −E0r cos θ

(
1− R3

r3

)
, (2.1.20)
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where we have converted to spherical coordinates.

The sphere isn’t actually grounded – we may need to add charge in order to fix the total charge
on the sphere to be zero. With the potential we’ve worked out so far, the induced charge density
on the sphere is

σ(θ, ϕ) = − 1

4π

dϕ

dr

∣∣∣∣
r=R

=
3

4π
E0 cos θ. (2.1.21)

Integrating this, we find a total charge of zero, so in fact our potential and charge density are
already correct.

The solution to the previous problem is somewhat non-traditional. A more general solution would
look at the Laplace equation and its boundary conditions explicitly, making use of the cylindrical
symmetry in the problem. Indeed, if we have a cylindrically symmetric potential ϕ(r, θ), the Laplace
equation becomes

1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
= 0. (2.1.22)

If we substitute the ansatz ϕ(r, θ) = R(r)Θ(θ) and separate variables, we find

R(r) = Arℓ +Br−(ℓ+1), Θ(θ) = Pℓ(cos θ), (2.1.23)

where A and B are constants of integration and Pℓ is a Legendre polynomial. Since the Laplace
equation is linear, the total potential should be a sum of solutions of this type, so we have

ϕ(r, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ +
Bℓ
rℓ+1

)
Pℓ(cos θ). (2.1.24)

Problem 2.4 (J98E3)
An insulated, uncharged, conducting, spherical shell of radius a is placed in a uniform electric
field of magnitude E0. Suppose the shell is cut into two hemispheres at its equator (in the plane
perpendicular to the field). What force is required to keep the hemispheres from separating?

This is an identical setup to in the previous problem, but here we will determine the potential
using (2.1.24). Since the asymptotic behavior of the potential is ϕ = −E0z = −E0r cos θ, only
the ℓ = 0 and ℓ = 1 modes are allowed. We can ignore A0, and A1 is clearly −E0, so we have

ϕ(r, θ) = −E0r cos θ +
B0

r
+
B1

r2
cos θ. (2.1.25)

The total charge on the sphere must be zero. Integrating the charge density σ ∝ dϕ
dr , this implies

B0 = 0. Furthermore, the field lines should be perpendicular to the sphere at r = R, so

dϕ

dθ

∣∣∣∣
r=R

=

(
E0R− B1

R2

)
sin θ = 0. (2.1.26)

This implies B1 = E0R
3, so yet again we find

ϕ(r, θ) = −E0r cos θ

(
1− R3

0

r3

)
. (2.1.27)
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The induced charge density is 3E0
4π cos θ, and the z-component of the electric field on the sphere

is 3E0 cos
2 θ. The total force on one hemisphere is thus

F = 2π

ˆ π

0

9E2
0

4π
cos3 θ(R2 sin θ dθ) =

9E2
0R

2

8
, (2.1.28)

so this is the force required to keep the hemispheres together.

For point charges, we can use (2.1.2) to compute the potential energy. When we deal with contin-
uous charge distributions, we have to generalize this expression to

U =
1

2

ˆ
dr1

ˆ
dr2

ρ(r1)ρ(r2)

|r2 − r1|
, (2.1.29)

where the factor of 1
2 comes from double counting terms of the form (2.1.2). This expression is

rather unwieldy. We can do better by recognizing (2.1.6), and writing it as

U =
1

2

ˆ
dr ρ(r)ϕ(r). (2.1.30)

Better yet, using Gauss’s law, this becomes

U =
1

8π

ˆ
dr |E(r)|2. (2.1.31)

We can thus think of the electric field itself as carrying an energy density E2

8π .

Problem 2.5 (J07E1)
A point charge Q is located at a distance r away from the center of a thin spherical conducting
shell of radius a, which has a net charge also equal to Q. Let U(r) be the total electrostatic
potential energy of this system.

a) What is U(0)− U(∞)?

b) Determine the leading behavior of U(r) − U(∞) as r → a, and make a qualitatively correct
sketch showing its important features over the whole range 0 ≤ r <∞.

c) As r → ∞, U(r) − U(∞) → Q2/r. Obtain the leading correction to this behavior for large
r.2

d) If you have not already done so, give the explicit function U(r)− U(∞) for all r.

2The prelim exams are almost always agnostic about Gaussian vs. stupid units. In this case, however, an
unfortunate choice was made. It is corrected here.
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In the several charge-and-sphere problems we have solved, we have found that the image charge
will induce an image charge which will lead to a surface charge distribution on the sphere, and
any additional charge is added uniformly. The image charge will be −Qa

r and it will be at a
distance a2

r from the center of the sphere, so we have

ϕ(s, θ) =
Q√

s2 + r2 − 2rs cos θ
− Q√

(sr/a)2 + a2 − 2rs cos θ
. (2.1.32)

This is valid for s < a if r < a, or for s > a if r > a. In either case we have to add the potential
due to the excess charge. The charge distribution on the sphere due to the image charge totals
−Q for r < a and −Qa/r for r > a, so the excess charge is Q (1 + min(1, a/r)). It gives rise to
an additional potential

ϕexcess(s, θ) = Q (1 + min(1, a/r))

{
1/s s > a

1/a s ≤ a
. (2.1.33)

We now need to compute the potential energy U(r) (we can ignore U(∞) = 0). Integrating the
electric field sounds like pulling out one’s own teeth, so we use (2.1.30). The total charge Q has
some nonuniform distribution on the sphere, but no matter, the sphere is at constant potential
ϕ(a) = Q

a (1 + min(1, a/r)), so this contributes Uexcess(r) =
Q2

2a (1 + min(1, a/r)). The energy of
the point charge is

Upoint(r) = − Q2

2r
√
r2/a2 + a2/r2 − 2

+
Q2

2

{
1/r(1 + a/r) r > a

2/a r < a
. (2.1.34)

In total and with a bit of simplification, we find

U(r) =
1

2
Q2

(
− 1

r|r/a− a/r|
+

{
1
a(1 + a/r)2 r > a

4/a r < a

)
. (2.1.35)

From this we can read off the answers. We have U(∞) = Q2

a , and so U(0) − U(∞) = Q2

a . As
r → a, the middle term dominates and we find U(r) − U(∞) ∼ −Q2

2a

∣∣ r−a
a

∣∣−1. As r → ∞, we
have

U(r)− U(∞) =
Q2

r
+
Q2a

2r2

(
1− 1

1− a2/r2

)
, (2.1.36)

so the leading order correction is −Q2a3

2r4
. The behavior of the function is plotted below.

U(r)− U(∞)

r

Q2/a
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2.2 Magnetostatics

All physical quantities need friends, and the electric field is no exception. It has a big job to do,
after all – imagine if you were responsible for holding every molecule in the universe together,
transporting energy around the globe, performing every digital calculation ever, and you had to
make people’s hair stand up at the science museum? We can hardly ask one field to do all that
without someone to keep it company.

The companion is of course the magnetic field, and it really is joined at the hip to the electric field.
Indeed, there’s no consistent sense in which the electric and magnetic fields are separate objects at
all; they represent different projections of a single field strength tensor. Only in the nonrelativistic
limit does it make any modicum of sense to talk about them separately. But, since that’s the limit
where we live, that’s how we’ll do things.

To pay lip service to relativity, we can give a quick motivation of the magnetic field from Lorentz
invariance. Consider a wire carrying current j, and a charge q a distance r from the wire moving
parallel to it at velocity v. What force would the charge feel? Electrostatics would tell us zero,
because the wire has no net charge density; but the charge is moving around, so electrostatics is
pretty useless here. Let’s fix this by moving to the rest frame of the charge, by making a Lorentz
boost.

Ooh, a Lorentz boost. Recall this means that we take

x′ = γ(x− βct), ct′ = γ(ct− βx), (2.2.1)

where x is the coordinate along the wire, β = v/c, and γ = (1− β2)−1/2. In particular, x′ = const
for the charge, so we are indeed in its rest frame. We need to figure out what the wire looks like
in this frame. The current j should be thought of as the product of some charge density and a
velocity, so if we upgrade this to a four-vector, we have

Jµ = ρUµ = (ρc, j), (2.2.2)

where Uµ is the four-velocity. It follows that after the Lorentz boost, the charge density in the wire
is

ρ′c = −βγj. (2.2.3)
It’s then quite simple to show that the electrostatic force on the charge should be

F ′ = −2βγqjA

cr
, (2.2.4)

where A is the cross-sectional area of the wire.

Cool, so what does this mean for the lab frame? Since the force is perpendicular to the Lorentz
boost, it transforms as F ′ = γF . So,

F = −2vqjA

c2r
. (2.2.5)

So a charge moving in the same direction as a current will feel an attraction to that current. This
is what a nonrelativistic person would call a magnetic force.

We can derive the same result in the lab frame using Ampére’s law,

∇×B =
4π

c
j. (2.2.6)
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˜
∇× v dA =

¸
v · dx

˝
∇ · v dV =

‚
v · dA

∇× (∇f) = 0 ∇ · (∇× v) = 0

Figure 2.4

By integrating this equation over a cylinder surrounding the wire, we find a magnetic field B = 2Aj
cr .

The electric and magnetic fields act upon particles via the Lorentz force law,

F = q
(
E +

v

c
×B

)
. (2.2.7)

For the charge next to the wire, we indeed find F = −2vqjA
c2r

r̂.

When we don’t have a nice symmetric current distribution like a wire, we still need some way of
solving Ampére’s law. Perhaps the easiest way to look at this is by using Gauss’s law for magnetism,

∇ ·B = 0. (2.2.8)

to write
B = ∇×A. (2.2.9)

Figure 2.4 gives a review of why this is the case, and why we have the freedom to replace A with
A+∇χ for any function χ. This freedom allows us to fix ∇·A = 0, a convention known as Coulomb
gauge, so that we have

−∇2A =
4π

c
j, (2.2.10)

which has the form of Poisson’s equation in each component. We can immediately integrate to
obtain

A(r) = −1

c

ˆ
d3r′

j

|r − r′|
, (2.2.11)

and then take the curl to arrive at the Biot-Savart law,

B(r) =
1

c

ˆ
d3r′

j × (r − r′)

|r − r′|3
. (2.2.12)

Problem 2.6 (J15E3)
This problem explores some elements of a mass spectrometer. Parts (a) and (b) may be answered
independently and treated non-relativistically.
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a) An ion of charge +q and mass m is accelerated through a potential V0 as shown in Fig. 2.5. It
enters a region between two very long (in the direction perpendicular to the page) cylindrical
electrodes of radius a and b respectively. Find the potentials V (a) and V (b) such that the
ion moves in a circle of radius r0.

V = V0Ion
Source

V = 0

r0

a b

Figure 2.5: Electrostatic filter

x̂

ŷ

+Q

+Q

ẑ

a

a

B0

−2Q

Figure 2.6: Penning trap.

b) A Penning trap is used in Fourier-transform mass spectrometry. At the simplest level, the
Penning trap consists of a uniform magnetic field B0ẑ and a quadrupole electric field. Let
us assume that the electric field is generated by two positive charges +Q > 0 located at ±aẑ
and a uniformly charged ring of radius a and charge −2Q centered around the origin in the
xy-plane, as shown in Fig. 2.6. This setup is rotationally symmetric around the z-axis.

i. Close to the origin, the electric field takes the form

E = kzzẑ + krrr̂ (2.2.13)

where r =
√
x2 + y2. Determine kz and kr.

While the general motion of an ion of mass m and charge q > 0 in the Penning trap is
quite complicated, here we investigate only two particular cases:

ii. Find the frequency ωz of small oscillations around the origin in the case where the ion
moves only along the z-axis.

iii. Assume the ion moves uniformly along a circle of radius R ≪ a in the plane at z = 0.
What is the angular frequency for this motion? Interpret the answer in the limit of large
B0.

The electric field between the two electrodes goes as E = E0a
r r̂, so

V (b)− V (a) = E0a log
b

a
. (2.2.14)
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The ion will have speed
√

2V0q
m , so if it moves in a circle of radius r0, the centripetal force on it

must be 2V0q
r0

. Thus,

E0 = −2V0q

a
, (2.2.15)

and it follows that V (b)− V (a) = −2V0q log
b
a .

For the Penning trap, first consider the point (0, 0, z), where z is small. The field due to the
point charges is

− Q

(a− z)2
+

Q

(a+ z)2
≈ −4Q

a3
z, (2.2.16)

and the field due to the ring is

− 2Qz

(a2 + z2)3/2
≈ −2Q

a3
z, (2.2.17)

so kz = −6Q
a3

. Now we consider the point (r, 0, 0), where r is small. The field due to the point
charges is

2Qr

(a2 + r2)3/2
≈ 2Q

a3
r, (2.2.18)

and the field due to the ring is

− 2Q

2πa

ˆ 2π

0

(− cos θ)(a dθ)

a2 + r2 − 2ar cos θ
≈ 2Q

a3
r, (2.2.19)

so kr = 4Q
a3

.

If the ion moves only along the z axis, then v×B = 0, so we only have to consider the electrostatic
force. The frequency will be

ωz =

√
−qkz
m

=

√
6Qq

ma3
. (2.2.20)

Let the angular frequency for rotation in the circle of radius R be ω. Then the speed of the ion
is ωR, and the magnetic force upon it will be qωRB0

c r̂. This balances the electrostatic force, and
in total we need to match the centripetal force, so

4Q

a3
R+

qωRB0

c
= −mω2R, (2.2.21)

implying

ω = − qB0

2mc

(
1±

√
1− 16mc2Q

q2B2
0a

3

)
. (2.2.22)

For large B0, this becomes

ω ≈ −qB0

mc
or ω ≈ − 4Qc

qB0a3
. (2.2.23)

The first solution is the usual cyclotron frequency. In the second solution, the magnetic force
exactly cancels the electric force to first order, so that the ion can rotate very slowly.
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Problem 2.7 (J11E3)
A right circular cylinder of radius R and length L is carrying a uniform current I parallel to the
axis of the cylinder.

a) What is the direction and magnitude of the magnetic field inside the cylinder? (Ignore end
effects, and other sources of the B field).

b) Next, directed towards the above current-carrying cylinder and parallel to its axis is a parallel
monochromatic beam of energetic charged particles. Show that within the following approx-
imation the beam will be focused at a point after passing through the cylinder. Derive an
expression for the focal length.
In the derivation neglect scattering and slowing down of the beam’s particles due to interac-
tions with the material within the cylinder (other than through the field described above),
and make the thin lens approximation by: i) assuming that the cylinder is short compared
to the focal length, yet at the same time, ii) ignoring end effects.

c) Consider using the magnet to collect into a parallel beam antiprotons produced by a beam
of high-energy protons that strike a target placed at the focal point of the magnetic lens.
Specifically: assume the magnet is a cylinder of lithium metal of length 15 cm and radius 1 cm,
and the total current it carries is I. What current would be required to collect antiprotons
that are produced with a momentum of 10GeV/c at angles up to 50mrad relative the beam
axis?

We use Ampére’s law to derive the magnetic field,

B =
2Ir

cR2
θ̂. (2.2.24)

In the thin lens approximation, the force F = −2Irvq
c2R2 r̂ will act for a time t = L/v to produce a

radial velocity vr = − 2ILq
mc2R2 r. The focal length is thus

x = v
r

−vr
=
mc2R2v

2ILq
. (2.2.25)

And now we confront numbers. Substituting the given parameters, we find

x =
1

I

(10GeV)(1 cm)2(3× 1010 cm/s)

2(15 cm)(−e)
, (2.2.26)

where e is the elementary charge. Since we want to collect particles at angles up to 50mrad, we
need x ≤ 1 cm

50mrad = 20 cm. This means

|I| ≥ (10GeV)(1 cm)2(3× 1010 cm/s)

2(20 cm)(15 cm)(e)
= 5.5× 105A, (2.2.27)

where we have converted to SI units for reporting a number, since nobody uses statamperes.
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Problem 2.8 (J13E1)a) Let a current I circulate in a square of wire of side d lying in the xy
plane, with center at the origin. What is the vector potential A at position x0, where x0 ≫ d?

b) What is the magnetic field B at x0?

c) At x0 lies a charge q0 at rest. Calculate the force acting on the charge, and the force acting
on the loop.

d) Now boost to a frame where the charge q0 and the loop are both moving with speed +v0x̂.
What is the electric field E′ due to the loop acting on the charge?

e) What is the total force Ftot acting on the charge q0 in this frame?

To determine the vector potential due to the current loop, we integrate Poisson’s equation. The
horizontal portions of the current clearly cancel, and we obtain

A(x0) =
I

c
ŷ

ˆ d/2

−d/2
dy

(
1√

(x0 − d/2)2 + y2
− 1√

(x0 + d/2)2 + y2

)
≈ Id

cx20
ŷ. (2.2.28)

There will be azimuthal symmetry at large x0, so really we have A = Id
cr2

θ̂. The magnetic field
is then

B̂ =
1

r

∂

∂r

(
r · Id

cr2

)
ẑ = − Id

cr2
ẑ. (2.2.29)

A charge q0 at rest will feel no force, because there is only a magnetic field. If we boost with
β = −v0

c x̂, then we have

E = γβBzŷ = γ
Idv0
c2r2

ŷ. (2.2.30)

Furthermore, the magnetic field will become B′ = γ Id
cr2

ẑ. Thus, the total force on the charge is

F ′ = q0

(
E′ +

v0x̂

c
×B′

)
(2.2.31)

= γq0

(
Id

cr2
v0
c
ŷ +

Id

cr2
v0
c
x̂× ẑ

)
(2.2.32)

= 0, (2.2.33)

a reassuring result.

Problem 2.9 (M02E3)
A current I, carried by freely moving electrons, runs through a cylindrical wire with radius r0.
Assuming that the electrons are moving with velocity v and that the total charge per unit length
in the wire vanishes (in the lab frame), find the radial profile of the current. What is the voltage
difference between the center and the edge of the cylinder?
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Let the number density of electrons be ne(r), and the number density of (stationary) protons be
np. We will pretend that electrons carry positive unit charge, since such a rescaling of charge
will not affect any physical conclusions. Then the charge and current distributions will be

ρ(r) = ne(r)− np, j(r) = ne(r)vẑ. (2.2.34)

The electric field will be
E(r) =

2r̂

r

ˆ r

0
(ne(r)− np)(2πr dr), (2.2.35)

and the magnetic field will be

B(r) =
2θ̂

cr

ˆ r

0
ne(r)v(2πr dr). (2.2.36)

In order to have a stable current distribution, the total force on electrons should vanish, so

E +
vẑ

c
×B =

2r̂

r

ˆ r

0
(ne(r)− np)(2πr dr)−

2vr̂

c2r

ˆ r

0
ne(r)v(2πr dr) = 0. (2.2.37)

Multiplying by r and taking the derivative with respect to r, we find

ne(r) =
np

1− v2/c2
, (2.2.38)

and in particular the distribution of charge carriers is independent of radius.

This is clearly inconsistent with the assumption that the total charge per unit length vanishes
in the lab frame. However, noting the factor of γ2 which appeared, we might look instead at the
frame of the electrons. In the lab frame we have

ρ = np(γ
2 − 1) = npγ

2β2, jz = npγ
2v. (2.2.39)

Upon boosting by vẑ, we obtain

ρ′ = γ

(
ρ− β

jz
c

)
= 0, j′z = γ(jz − vρ) = npγv, (2.2.40)

so this is the frame where the charge per unit length vanishes.

In any case, the voltage difference between the center and edge of the cylinder, in the lab frame,
is

δϕ =

ˆ r

0
E(r) · r̂ dr = 2πnpγ

2β2r20. (2.2.41)

In electrostatics, the simplest setup we could have was a charge sitting in some fixed potential. The
potential energy of the charge is given by qϕ. There is no analogue of charge in the magnetic case,
owing to the equation ∇ · B = 0. The simplest source of magnetic fields is a current, which will
turn out to be more similar to an electric dipole.

For the sake of comparison, take an electric dipole formed by charges q and −q, and let the vector
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from the negative to the positive charge be a. The potential energy of this configuration will be

U = qϕ(x+ a)− qϕ(x), (2.2.42)

where x is the position of the negative charge. If we let a shrink to zero while holding qa fixed, we
find

U = qa · ∇ϕ = −(qa) ·E. (2.2.43)

This shows that an electric dipole wants to align itself with the electric field, which makes sense.

A magnetic dipole can be formed by taking a current loop. For the sake of concreteness, imagine
a circular loop of radius a carrying a current I, with a normal vector n̂. If we take the loop
small enough, the net magnetic force will vanish, just as the net electric force on an electric dipole
vanishes. There will, however, be a nonzero torque which we can compute. It is

τ =

ˆ 2π

0
dθ (ar̂)× (Ia(n̂× r̂)×B) . (2.2.44)

The Geneva Convention classifies integrals with three or more cross products as war crimes, so we’d
better simplify. We have

r̂ × ((n̂× r̂)×B) = (r̂ ·B)(n̂× r̂). (2.2.45)

Furthermore, B̂ = B cos θn̂+B sin θx̂, where x̂ is some direction in the plane of the loop and θ is
the angle between B and n̂. Using this representation, we find

τ = πIa2B sin θx̂. (2.2.46)

This torque could be derived from the potential energy

U = −(πa2In̂) ·B = −(IAn̂) ·B. (2.2.47)

By analogy with the electrostatic case, we define a magnetic moment m = IAn̂, so that we have
the potential energy −m ·B and the dipole wants to align itself with the magnetic field.

Problem 2.10 (J12E3)
An uncharged particle of mass M and magnetic moment m sits in a vacuum above a superconduc-
tor. The surface of the superconductor is the infinite plane z = 0. It is an ideal superconductor,
so the magnetic field vanishes (B = 0) inside the superconductor (z < 0). The particle’s position
and the orientation of its magnetic moment are those that minimize its energy in the presence
of gravity g = −gẑ.

a) How far above the superconductor does the particle sit?

b) What is the orientation of its magnetic moment relative to the z axis?
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Clearly we need to use the potential energy −m ·B to solve this problem, but first we need the
field B. We start by determining the field due to a magnetic moment in a vacuum. For a ring of
radius a at the origin carrying a current I, oriented with its normal along the z axis, the vector
potential will be

Aϕ(r, θ) =
1

c

ˆ 2π

0

Ia cosϕdϕ√
r2 + a2 − 2ra sin θ cosϕ

. (2.2.48)

For a≪ r, this reduces to

Aϕ(r, θ) =
Iπa2

cr2
sin θ, (2.2.49)

and so
B(r, θ) = ∇×A =

m

cr3

(
2 cos θr̂ + sin θθ̂

)
, (2.2.50)

where we have replaced m = πa2I.

If we place a magnetic moment at height h above a superconductor, then somehow the field
must be screened within it. We can imagine this happening via some current distribution in the
superconductor. This current distribution will only be stable if the normal component of the
magnetic field vanishes at the surface of the superconductor.

In order to satisfy this boundary condition, we can employ an image moment with opposite
vertical component at height −h, directly below the real moment. It is straightforward to show
that this makes the magnetic field purely tangential on the surface of the superconductor. The
real moment will then feel a magnetic field due to its image. The real moment is at coordinates
(2h, π + θ) with respect to the position and orientation of its image, so it perceives a field

B =
m

8ch3
(−2 cos θẑ − sin θx̂) . (2.2.51)

This gives a potential energy of

U =Mgh+
m2

8ch3
(
cos2 θ + 1

)
. (2.2.52)

Clearly the moment will be oriented at θ = π
2 to minimize this energy. We then have

dU

dh
=Mg − 3m2

8ch4
= 0 =⇒ h =

(
3m2

8cMg

)1/4

. (2.2.53)

2.3 Electromagnetic Fields in Matter

We’ve solved a few problems involving conductors, which screen electric fields. If a material isn’t an
ideal conductor, meaning its electrons are to some degree bound in atoms, how does it respond to
an electric field? Heuristically, each charge carrier in the material will move a little bit in response
to the field – protons will move along the field, and electrons will move in the opposite direction.
These effects cancel in the bulk, but lead to a nonzero induced surface charge.

This surface charge will, in turn, generate an electric field which opposes the original field. This
suggests how we can interpolate between perfect insulators and perfect conductors. In a perfect
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insulator there would be no surface charge and no screening of the field; in a perfect conductor, the
surface charge would be just enough to exactly cancel the field; for a real material, the situation is
something in the middle, with partial screening of the electric field.

It’s conventional to make a distinction between these induced surface charges, called bound charges
and denoted ρb, and other charges, called free charges and denoted ρf . Both types of charge are
perfectly good, so they both source electric fields:

∇ ·E = 4π(ρf + ρb). (2.3.1)

As discussed above, this total field will be a superposition of the applied field and the response due
to polarization of the material. We could imagine a field D, called the electric displacement field,
which is sourced only by the free charges:

∇ ·D = 4πρf . (2.3.2)

The rest of the electric field is due to the bound charges.

The relationship between D and E depends on the exact behavior of the material, and so in principle
can be very complicated. Typically we ignore the complexity and assume a linear relationship,

D = ϵE, (2.3.3)

where ϵ = 1+ 4πχ is the relative permittivity, and χ is the susceptibility of the material. We then
define a polarization density P by

P = χeE, (2.3.4)

so that we can write
D = E + 4πP . (2.3.5)

There are two dimensionless constants we can compare in this derivation between SI units and
Gaussian units. In SI units, the relative permittivity would be written ϵ/ϵ0, and it is analogous to
the ϵ here; and also, there is a susceptibility χe in both unit systems. The relative permittivities do
agree, but in SI units it is conventional to write ϵ/ϵ0 = 1 + χ, leading to a discrepancy by a factor
of 4π:

χG
e =

χSI
e

4π
. (2.3.6)

This is important to remember when comparing expressions given in Gaussian units to expressions
given in inferior units.

In any case, there is a very similar story to be told for magnetism. Since electrons move in orbitals
around atoms, atoms are effectively magnetic dipoles (not to mention the intrinsic magnetic dipole
moment of the electron, which we’ll discuss in Chapter 3). So, if we apply a magnetic field to a
material, the dipoles within it will align with the field.

In reality, it’s not nearly this simple. The Bohr-van Leeuwen theorem shows that magnetization of
a material can’t occur within the framework of classical physics. So, although we’ll give a classical
description of the phenomenon in what follows, it’s truly a quantum effect. The only consequence of
this we’ll need is that, while materials are (almost) always dielectrics – creating fields which oppose
the applied field – they can be either paramagnetic or diamagnetic. Paramagnetic materials have
magnetization aligned with the applied field.



68 CHAPTER 2. ELECTROMAGNETISM

We now proceed as before. The total current density is made up of bound and free pieces, j = jf+jb.
We define a field H which satisfies

∇×H =
4π

c
jf , (2.3.7)

and assume a linear relationship
B = µH, (2.3.8)

where µ is the relative permeability. Note that this is in some sense the opposite of the convention
for electric fields. If we take µ = 1 + 4πχm, and define a magnetization

M = χmH, (2.3.9)

then we have
B = H + 4πM . (2.3.10)

From this equation we see that materials with positive magnetic susceptibility χm > 0 will enhance
the magnetic field, and so these are the paramagnetic materials. Diamagnetic materials have
χm < 0.

So much for the fields. This discussion is based on the effects of bound charges and currents, so
it would be nice to know what these actually are. It’s almost immediate from (2.3.5) and (2.3.10)
that

ρb = −∇ · P , jb = c∇×M . (2.3.11)

In principle this is the whole story, but in practice, typically P and M are uniform throughout
a material and then zero outside of it, so there will be some singular distribution of charge and
current on the surface. To determine the surface charge, we can integrate the bound charge density
over a small region around the surface and find a surface charge density

σb = −P · n̂, (2.3.12)

where n̂ is an outward facing normal. Similarly, we can integrate the bound current density around
a small ring at the surface, and find a surface current density

κb = cM × n̂. (2.3.13)

Problem 2.11 (J02E3)
It has proven possible to levitate objects (frogs!) on the surface of the earth in regions of high
magnetic field gradients. This problem explores how a “spherical frog” might be levitated above
a permanent magnet.

a) Consider a magnetic disk of radius a and thickness h ≪ a. The magnetic material has a
constant magnetic moment/volume M oriented parallel to the axis of the disk, the z axis.
Find the magnetic field B(z) along the z axis.

b) The “spherical frog” to be levitated has a radius b and mass k and (relative) diamagnetic
permeability µ. Assume that b≪ a, so that the magnetic field is roughly constant across the
frog. Find the maximum value for the mass k for there to be an equilibrium point above the
disk in terms of m, a, b, h, µ, and the position z0 above the disk where that occurs.
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The magnetization induces a bound current

κb =Mcθ̂ (2.3.14)

on the edge of the disk. We can use the Biot-Savart law to determine the field due to this current,

B =M

ˆ 2π

0

θ̂ × (r − r′)

a2 + z2
(a dθ). (2.3.15)

By symmetry, only the ẑ component survives, which yields a factor a√
a2+z2

. This gives

B = 2(Mπa2h)
1

(a2 + z2)3/2
. (2.3.16)

We define m ≡Mπa2h, the total magnetic dipole moment of the disk.

We now need to determine the potential energy of the frog in the field. The magnetization of
the frog is

M = χMH =
µ− 1

4π
H, (2.3.17)

and so its total magnetic dipole moment is m = µ−1
3 b3H. This gives a potential energy

U = kgz −m ·B = kgz − 4

3
(µ− 1)

b3m2

(a2 + z2)3
. (2.3.18)

The equilibrium point will occur where

0 =
∂U

∂z
= kg + 4(µ− 1)b3m2 2z

(a2 + z2)4
. (2.3.19)

To find the maximum possible mass, we need to find the maximum possible value of

Fmag = 4(1− µ)b3m2 2z

(a2 + z2)4
. (2.3.20)

Taking a derivative we find dFmag
dz ∝ a2 − 7z2, so the maximum will occur at z = a/

√
7, which

gives

k =
1

g
Fmag =

√
7

(
7

8

)3

(1− µ)
b3m2

a7
. (2.3.21)

Note that none of this is possible unless µ < 1, i.e., unless the frog is diamagnetic.

Problem 2.12 (M02E2)
A cylinder of radius a and dielectric constant ϵ is placed along the z-axis in a electric field,
whose form is Ei = E0x̂ + E1[(x/a)x̂ − (y/a)ŷ] before the cylinder is placed in the field. Give
expressions for the total electric field E, the displacement field D and the polarization density
P everywhere.
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We start by finding the electric potential. We can write the general expansion in cylindrical
coordinates

ϕ(r, θ) =

∞∑
n=1

((r
a

)n
(an cosnθ + bn sinnθ) +

(r
a

)−n
(cn cosnθ + dn sinnθ)

)
. (2.3.22)

We will need to find the potential in the regions r < a and r > a separately, and so we label the
coefficients as a±n , etc.

There is no free charge, so ∇·D = 0. This in particular means that the perpendicular component
of D is continuous across the boundary of the cylinder. Using D = ϵE, this gives the jump
condition

ϵ
dϕ

dr

∣∣∣∣
a−δ

=
dϕ

dr

∣∣∣∣
a+δ

. (2.3.23)

Additionally, continuity requires ϕ(a−δ) = ϕ(a+δ). And finally, agreement with the unperturbed
field at r ≫ a requires

∂ϕ

∂r
→ −Ei · r̂ = −E0 cos θ − E1 cos 2θ. (2.3.24)

Clearly we will only need the n = 1 and n = 2 modes and bn = dn = 0, so we just need to solve
for the eight coefficients a±1,2 and c±1,2. We must set c−1 = c−2 = 0 to avoid a singularity at the
origin. Continuity at the boundary implies

a+1 + c+1 = a−1 , a+2 + c+2 = a−2 . (2.3.25)
The surface charge condition implies

a+1 − c+1
a

cos θ + 2
a+2 − c+2

a
cos 2θ = ϵ

a−1
a

cos θ + 2
a−2
a

cos 2θ. (2.3.26)

The boundary condition at infinity fixes

a+1 = −aE0, a+2 = −a
2
E1. (2.3.27)

This is enough information to solve for all the coefficients. We find

c+1 = a
ϵ− 1

ϵ+ 1
E0, c+2 =

a

2

ϵ− 1

ϵ+ 1
E1,

a−1 = − 2a

ϵ+ 1
E0 a−2 = − a

ϵ+ 1
E1.

(2.3.28)

From this we have

E =



(
E0

(
1 +

a2

r2
ϵ− 1

ϵ+ 1

)
cos θ + E1

(
r

a
+
a3

r3
ϵ− 1

ϵ+ 1

)
cos 2θ

)
r̂

−
(
E0

(
1 +

a2

r2
ϵ− 1

ϵ+ 1

)
sin θ + E1

(
r

a
+
a3

r3
ϵ− 1

ϵ+ 1

)
sin 2θ

)
θ̂

r > a

2

ϵ+ 1

[(
E0 cos θ + E1

r

a
cos 2θ

)
r̂ −

(
E0 sin θ + E1

r

a
sin 2θ

)
θ̂
]

r < a

(2.3.29)

Note that if we take ϵ = 1, we recover E = Ei everywhere, a reassuring check.

The displacement field D differs from this only by a factor of ϵ in the r < a field. The polarization
P vanishes for r < a, and is given by ϵ−1

4π E for r < a. Neither of these are worth writing out in
all their ugly glory.
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Problem 2.13 (J10E2)
A solid metallic sphere of radius a has finite conductivity, carries no net electric charge, and is
free to rotate without friction about a vertical axis through its center. The region outside the
sphere is vacuum. There is a uniform magnetic field with flux density B0 parallel to the axis.

The sphere is given an impulse that starts it spinning around the axis and there is some initial
Ohmic dissipation. After the dissipation has ceased, the sphere is in a steady state of rigid
rotation with constant angular velocity ω∞.

ω

a

B0

In steady state, to lowest order in both B0 and ω∞ find:

a) The electric field E(r) and electric potential ϕ(r) in the interior of the sphere, r < a. (Give
these in the non-rotating “laboratory frame.”)

b) The electric potential outside the sphere. (Express your answer in spherical coordinates
(r, θ, φ).) State the nature of the electric field it describes (i.e., monopole, dipole, quadrupole,
etc.).

c) The induced bulk and surface charge density distributions in the conductor that give rise to
this potential.

The force on a charge at radius r < a is

F = qE +
qωr sin θ

c
B0(φ̂× ẑ) = qE +

qωrB0

c

(
1

2
sin 2θθ̂ + sin2 θr̂

)
. (2.3.30)

Therefore, we must have
E = −ωrB0

c

(
1

2
sin 2θθ̂ + sin2 θr̂

)
(2.3.31)

in the interior of the sphere. This field comes from the potential

ϕ =
ωB0

2c
r2 sin2 θ − ωB0a

2

3c
, (2.3.32)
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where we have added a constant term to make the average value of ϕ on the sphere vanish.

We need to smoothly connect this to a potential outside the sphere which solves Laplace’s
equation and decays to zero. Using the expansion in spherical coordinates,

ϕ(r, θ, φ) =

∞∑
ℓ=0

(
Aℓr

ℓ +
Bℓ
rℓ+1

)
Pℓ(cos θ), (2.3.33)

we see that only the ℓ = 2 term contributes (by construction). Outside the sphere, we have

ϕ(r, θ, φ) =
ωB0a

5

6cr3
(
1− 3 cos2 θ

)
. (2.3.34)

This is the field of a quadrupole since it comes from the ℓ = 2 term.

The induced charge density in the conductor is

ρb =
1

4π
∇ ·E = −3ωB0

4πc
sin2 θ − ωB0

4πc

1 + 3 cos 2θ

2
= −ωB0

2πc
, (2.3.35)

and the induced surface charge density is

σb = − 1

4π

(
∂ϕ

∂r

∣∣∣∣
a+δ

− ∂ϕ

∂r

∣∣∣∣
a−δ

)
= −5ωB0a

8πc
sin2 θ +

ωB0a

4πc
. (2.3.36)

It is straightforward to check that the total induced charge vanishes.

Problem 2.14 (J05E1)
Two concentric conducting spheres of radii a and b carry charges +Q and −Q as shown. The
radial gap between the spheres is half filled with a material of dielectric constant ϵ and half filled
with vacuum.

a

b

ϵ

+Q

−Q

a) Find the electric field E and the displacement field D everywhere between the spheres.

b) What is the bound charge density on the surfaces of the dielectric?
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The displacement field D is sourced only by the free charge, so for a < r < b we have

D =
Q

r2
r̂. (2.3.37)

It follows that

E =

{
Q
ϵr2

r̂ θ < π/2
Q
r2
r̂ θ > π/2

. (2.3.38)

The polarization is
P =

ϵ− 1

4πϵ

Q

r2
r̂ a < r < b, θ < π/2. (2.3.39)

Thus, the bound charge density is

σout =
ϵ− 1

4πϵ

Q

b2
, σin = −ϵ− 1

4πϵ

Q

a2
. (2.3.40)

Conductors also have interesting properties beyond their equilibrium states (which we have already
discussed). The entire field of magnetohydrodynamics is devoted to studying conducting fluids,
but that’s hard, so nevermind. Conductors respond to electric fields with currents, via

j = σE. (2.3.41)

The constant σ is the conductivity. It can be a tensor for nonisotropic materials, but usually we
ignore this and treat it as a scalar.

We may also define a resistivity ρ = σ−1, such that

E = ρj. (2.3.42)

If the conductor is a wire with length L and cross sectional area A, then |E| = V/L and |j| = I/A,
so we have

V =
ρL

A
I ≡ IR, (2.3.43)

where we have defined the bulk resistance R = ρL
A . Both this and (2.3.41) are known as Ohm’s

law.

Problem 2.15 (J11E2)
A pulsed beam of charged particles is shot into a finite electrically isolated plate of ohmic
conductance σ and dielectric coefficient ϵ. At the end of the pulse (at time t = 0) the charge
per unit volume in the plate is non-uniform and given at r by ρ0(r), where the position vector
r specifies points inside the plate. You may neglect any magnetic fields in the plate.

a) Show that the final state of static equilibrium is one in which the charge is deposited only on
the surface of the plate.

b) Find the equation governing the charge distribution ρ0(r) for t > 0 as the system approaches
static equilibrium.
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c) Solve this equation and show that the interior charge moves to the surface with a characteristic
time constant τ . Determine the expression for τ .

If there is charge in the interior of the plate, pick some point r at which ρeq(r) ̸= 0, and draw a
sphere around it, small enough that the charge in the sphere is roughly uniform. Then Gauss’s
law tells us that there is force on the charge on the boundary of the sphere, so this is not an
equilibrium state.

The continuity equation for charge is

∂ρ

∂t
+∇ · j = 0. (2.3.44)

Using Ohm’s law, we find
∂ρ

∂t
+ 4πσρ = 0. (2.3.45)

The solution to this equation is
ρt(r) = ρ0(r)e

−4πσt, (2.3.46)

so the characteristic time is τ = 1
4πσ .

2.4 Electrodynamics

Fields can change, and when fields change they change other fields. It’s an ambitious crossover
event. Faraday discovered that a changing magnetic field gives rise to a circulating electric field,
via

∇×E = −1

c

∂B

∂t
. (2.4.1)

This is fittingly called Faraday’s law. Note that this means we can’t necessarily write E = −∇ϕ
anymore. Instead we need the more general relation,

E = −∇ϕ− 1

c

∂A

∂t
, (2.4.2)

which is tailor-made to be consistent with Faraday’s law.

Problem 2.16 (J15E1)
A small wire loop of radius a lies in the xy-plane, centered on the origin. A magnetic moment
m = mẑ travels up along the z axis with constant speed v. It passes through the center of the
wire loop at t = 0.

a) Compute the emf E(t) around the loop.

b) If the loop has resistance R, find the Joule heat P (t). Assume the loop is fixed in position.
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Figure 2.7

c) Now consider the case where a uniform linear charge density λ is glued to a nonconducting
loop (same orientation and radius as above), and the loop is allowed to spin. What is the
position of m at the time the loop attains its largest angular momentum, Lmax? What is the
value of Lmax? Assume the dipole began its constant-velocity motion at t = −∞, and that
the loop was at rest then.

The emf is given by the integral of E around the loop. We can obtain this by integrating
Faraday’s law over a surface bounded by the loop, for which we take a spherical cap. When the
magnetic moment is at −z, the cap spans angles θ ∈ [0, tan−1(a/z)] and has radius

√
z2 + a2.

The magnetic field of a dipole m at the origin is

B =
m

cr3

(
2 cos θr̂ + sin θθ̂

)
. (2.4.3)

Thus,
‹

B ·dA =
2πm

c(a2 + z2)3/2

ˆ tan−1(a/z)

0
(2 cos θ)((a2+v2) sin θ dθ) =

πm

c(a2 + z2)1/2
sin2 tan−1(a/z).

(2.4.4)
Letting z = −vt and simplifying, we find

‹
B · dA =

2πma2

c(a2 + v2t2)3/2
. (2.4.5)

Thus,

E(t) = −1

c

∂

∂t

‹
B · dA =

6πmv2a2t

c2(a2 + v2t2)5/2
. (2.4.6)

If the loop has resistance R, then Ohm’s law tells us the current will be I = E/R, so we find

P (t) =
1

R

36π2(mv2)2a4t2

c4(a2 + v2t2)5
. (2.4.7)
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For the last part, the torque on the loop about its center is

τ = (a · (2πa)λ · E(t)) ẑ. (2.4.8)

The loop will attain its largest angular momentum when the torque vanishes, and evidently this
occurs at t = 0. To find Lmax, we integrate τ up to t = 0:

Lmax =
6πmv2λ

c2a2
ẑ

ˆ 0

−∞

t dt(
1 + v2

a2
t2
)5/2 = −2πmλ

c2
ẑ. (2.4.9)

In the previous problem, some fields moved around, and suddenly there was energy and angular
momentum in a mechanical system. If we want to make sense of this and still have conservation
laws, we need to determine how the electromagnetic field can carry conserved quantities.

Before we can do this, we note that Ampére’s law is not complete as we have stated it. Just
as a changing magnetic field contributes to the curl of an electric field, a changing electric field
contributes to the curl of a magnetic field. The full Ampére law is

∇×B =
1

c

(
4πj +

∂E

∂t

)
. (2.4.10)

For historical reasons, the additional term is sometimes called the displacement current.

Now we return to the question of field energy. We have already worked this out in the electrostatic
case, finding an energy density of u = 1

8πE
2. We might expect a similar statement for the magnetic

field, but until now we have been unable to address how the magnetic field stores energy, because
the Lorentz force q vc ×B does no work. Using Faraday’s law, we have

∂

∂t
B2 = 2B · ∂B

∂t
= −2cB · (∇×E) = −2c∇ · (E ×B)− 2cE · (∇×B). (2.4.11)

Using Ampére’s law, we find

∂

∂t
B2 = −2c∇ · (E ×B)− 8πE · j − 2E · ∂E

∂t
. (2.4.12)

Now we can examine each term on the right hand side. The final term is just − ∂
∂tE

2, so we have in
fact derived an expression for the time derivative of E2 + B2. We will divide through by 8π since
we know this gives the correct energy density of the electric field. Taking the whole expression to
be an energy density

u =
1

8π

(
E2 +B2

)
, (2.4.13)

we have
∂u

∂t
= −∇ · S −E · j. (2.4.14)

The second term on the right is energy lost to mechanical motion of charges as the electric field
accelerates them. The first term is new and mysterious; we have defined the Poynting vector
S = c

4π (E ×B). In the absence of current, j = 0, we have

∂u

∂t
+∇ · S = 0. (2.4.15)
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This is a continuity equation for energy if we identify S as an energy current. Since S depends only
on the fields, it describes how energy can be carried by electrodynamics in vacuum (or in media).

One conserved quantity down, two to go. We can consider momentum next; this is fairly easy,
because momentum and energy are joined at the hip by relativity. The conservation of energy
momentum ∂µP

µ = 0 can be expanded as

1

c2
∂u

∂t
+∇ · g = 0, (2.4.16)

where g is the momentum density. Using (2.4.14), we find that in vacuum (where the momentum
of charged particles can be ignored), we have

g =
1

c2
S. (2.4.17)

This is the momentum density of the electromagnetic field itself. From this we can immediately
compute the angular momentum density about some origin,

ℓ =
1

c2
r × S. (2.4.18)

Problem 2.17 (M12E1)
A long thin non-conducting cylinder of radius r and height h≫ r is concentric with a line charge
of charge per unit length −λ. The cylinder has a uniform surface charge density with equal and
opposite total charge per unit length +λ. The cylinder is free to rotate about its symmetry axis
and has moment of inertia per unit length I/h. At times t < 0 the cylinder is at rest and a
spatially uniform axial external magnetic field B0ẑ is present, as shown in the figure. At time
t = 0, the externally applied field is ramped down to zero.

a) Compute the torque on the cylinder in terms of dBz
dt , with Bz the (approximately uniform)

axial magnetic field within the cylinder.

b) Find the angular velocity of the cylinder after the external field is reduced to zero, noting
that the final field within the cylinder will be non-zero. Express your answer in terms of λ,
r, B0, I, and/or h and whatever fundamental constants are required.

c) Recalling that the density of linear momentum stored in the electromagnetic field is propor-
tional to the Poynting vector, express the angular momentum of the initial state. Demonstate
that the total angular momentum (mechanical plus electromagnetic) is conserved between the
initial and final states.

The electric field induced in the cylinder is 1
c
r
2
dBz
dt θ̂. This means the total torque is

τ =
r2hλ

2c

dBz
dt

ẑ. (2.4.19)
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The rotation of the cylinder leads to a magnetic field within the cylinder. We can compute this
from Ampére’s law. If we draw a rectangle with one side going through the cylinder, the current
piercing this rectangle will be ( λh2πr )(ωr), so the field generated by the cylinder is

Bcyl =
λω

2πc
ẑ. (2.4.20)

We thus need to solve
Iω =

r2hλ

2c

(
B0 −

λω

2πc

)
. (2.4.21)

The result is

ω =
r2hλB0

2Ic

(
1 +

λ2r2h

4πIc2

)−1

. (2.4.22)

The initial electric field is

E(s) =

{
−2λ

s ŝ s < r

0 s ≥ r
. (2.4.23)

The Poynting vector in the cylinder is thus

S =
c

4π
E ×B =

λcB0

2πs
θ̂, (2.4.24)

and so the angular momentum density is

ℓ =
1

c2
r × S =

λB0

2πc
ẑ, (2.4.25)

giving a total initial angular momentum of L = λB0r2h
2c .

For the final electromagnetic angular momentum, we simply replace B0 with λω
2πc . The mechanical

angular momentum is Iω. In total,

L =

(
I +

λ2r2h

4πc2

)
ω =

r2hλB0

2c
. (2.4.26)

And would ya look at that, physics actually worked.

Problem 2.18 (J07E2)
A hollow spherical shell centered at the origin has radius a and a total electric charge Q > 0
uniformly distributed over its surface. The shell is slowly spun up to an angular velocity ω = ω0ẑ
(where ω0 > 0) over a period of time τ ≫ a/c, where c is the speed of light, so radiation effects
can be ignored.

a) To linear order in dω
dt , find expressions for the electromagnetic fields E(r) and B(r) through-

out space, as functions of ω and dω
dt . Make a qualitatively correct sketch showing the pattern

of electric field lines in the plane z = 0. Indicate the direction of rotation of the charged shell
on your plot.
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b) After the angular velocity ω0 is reached, what is the total angular momentum L̂ stored in
the electromagnetic fields?

We are working to linear order in dω
dt , so we start by finding the fields which contain no powers

of dω
dt , i.e., the fields of a sphere rotating at constant ω. The electric field is simply

E =

{
Q
r2
r̂ r > a

0 r < a
. (2.4.27)

To find the magnetic field, we need to integrate the current

j =
Q

4πa
ω sin θϕ̂. (2.4.28)

over the sphere. One could probably do so directly, but there are far more fun things to do with
one’s day, such as elective dental surgery. Instead, we will borrow a useful solution technique
from electrostatics, separation of Laplace’s equation. Everywhere except the sphere we have
∇ × B = 0, so we could write B = −∇Φ off the sphere. We will need to split this into an
inner and an outer solution, and the current distribution on the sphere relates the two. Indeed,
Ampére’s law implies

Bθ,out −Bθ,in =
Qω

ac
sin θ. (2.4.29)

Furthermore, ∇ ·B = 0 implies that Br is continuous across the sphere. With this information,
we can write two magnetic potentials

Φin =
∞∑
ℓ=0

(
Ain
ℓ r

ℓ +
Bin
ℓ

rℓ+1

)
Pℓ(cos θ) Φout =

∞∑
ℓ=0

(
Aout
ℓ rℓ +

Bout
ℓ

rℓ+1

)
Pℓ(cos θ). (2.4.30)

Boundary conditions at 0 and infinity require Bin
ℓ = Aout

ℓ = 0. Continuity of Br implies

Bout
ℓ = − ℓ

ℓ+ 1
a2ℓ+1Ain

ℓ , (2.4.31)

and the current density implies

Bout
ℓ P ′

ℓ(cos θ) sin θ −Ain
ℓ a

2ℓ+1P ′
ℓ(cos θ) sin θ =

Qω

c
aℓ+1 sin θ. (2.4.32)

Clearly we should only use the ℓ = 1 terms, for which P ′
ℓ(cos θ) = 1. Then we have

Bout
1 = −1

2
a3Ain

ℓ , Bout
ℓ −Ain

ℓ a
3 =

Qω

c
a2. (2.4.33)

We easily solve this system and find

Φin = −2Qω

3c

r

a
cos θ, Φout =

Qω

3c

a2

r2
cos θ. (2.4.34)
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This gives a magnetic field

B =

{
2Qω
3ca (cos θr̂ − sin θθ̂) r < a
Qωa2

3cr3
(2 cos θr̂ + sin θθ̂) r > a

. (2.4.35)

Finally, we find the electric field induced by the change in this magnetic field. If only we knew
the vector potential, we could immediately write

E = −∇ϕ− 1

c

∂A

∂t
, (2.4.36)

and the second piece would be the part linear in dω
dt . It is not too difficult to determine a vector

potential from the magnetic field. If only Aϕ ̸= 0, then we would have

∇×A =
1

r sin θ

∂

∂θ
(sin θAϕ) r̂ − 1

r

∂

∂r
(rAϕ)θ̂. (2.4.37)

Comparing this with B, we see that

Aϕ =

{
Qω
3car sin θ r < a
Qωa2

3c
sin θ
r2

r > a
. (2.4.38)

It immediately follows that

E =

{
− Q

3ca
dω
dt r sin θϕ̂ r < a

Q
r2
r̂ − Qa2

3c
dω
dt

sin θ
r2

r > a
. (2.4.39)

In the plane z = 0 we have θ = π
2 , so these expressions simplify somewhat. The E field in this

plane is shown below.

ω

After the shell stops rotating, the dω
dt correction to the electric field vanishes, and so

g =
1

4πc
E ×B =

{
0 r < a
Q5ω0a2

12πc2r5
sin θϕ̂ r > a

. (2.4.40)
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Figure 2.8: A driven RLC circuit.

This gives an angular momentum density

ℓ = r × g =

{
0 r < a
Q2ω0a2

12πc2r4
sin θ(sin θẑ − cos θ cosϕx̂− cos θ sinϕŷ) r > a

, (2.4.41)

where we have expanded θ̂ in terms of Cartesian basis vectors. Clearly only the ẑ component
will be nonvanishing in the integral, and we find

L =
Q2ω0a

2

6c2
ẑ

ˆ ∞

a
r2 dr

ˆ θ

0
(sin θ dθ)

sin2 θ

r4
=
Q2ω0a

9c2
ẑ. (2.4.42)

Electromagnetic induction opens up the possibility of interesting circuits. We have already derived
Ohm’s law for resistors,

V = IR = R
dQ

dt
. (2.4.43)

Capacitors have a voltage related to charge itself, rather than its derivative:

V =
Q

C
, (2.4.44)

where C is capacitance. Using a coil of wire one can form an inductor, which responds to changes
in current via

V = L
d2Q

dt2
, (2.4.45)

where L is inductance.

Figure 2.8 depicts a circuit containing all of these elements, in addition to a battery with voltage
V . Since the total change in voltage around the circuit must vanish, we find

V =
Q

C
+R

dQ

dt
+ L

d2Q

dt2
. (2.4.46)

This equation is easy to solve by standard methods. It takes the form of a damped oscillator with
undamped frequency 1√

LC
.
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Now imagine replacing the DC battery with an AC power source, which provides a voltage V =
V0e

iωt. We can use the ansatz Q = I0
iωe

iωt, and find

V =
1

iωC
I0 +RI0 + iωLI0 =

(
1

iωC
+R+ iωL

)
I0. (2.4.47)

We call the quantity in parentheses the impedance of the circuit. The real part is resistance, and the
imaginary part is called reactance and denoted X. Note that if the driving frequency ω approaches
one of the characteristic frequencies of the circuit, the impedance tends to zero; in this case we say
the circuit is resonating.

Problem 2.19 (J13E3)
Complex Impedances

+

−
E

L

C

R

C

A
B

a) Consider the circuit above. The switch can be set in any of three positions, A, B, or open
(unconnected). The source supplies a voltage E(t) = E0eiωt.
When the switch is connected to A, find the frequency ω that maximizes the current through
the resistor R.

b) If we then flip the switch to the B position, what is the average power dissipation in the
circuit (ignoring transient effects)?

c) We now open the switch to the middle position. Find the value of the resistor R that will
drop the amplitude to 1/2 the value you found in part a), at the same frequency ω that you
found in part a).

d) Suppose that the inductor, of inductance L, is constructed from a solenoid with N turns over
a length ℓ, whose axis of symmetry lies on the x̂ axis.
Express the cross sectional area of the solenoid in terms of the inductance L, the number of
turns N , the length ℓ and any fundamental constants.

When the switch is connected to A, the two capacitors run in parallel, giving an equivalent
capacitance 2C. The impedance of the circuit is then

Z = R+ iωL+
1

2iωC
. (2.4.48)
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We need to find the value of ω which minimizes the magnitude of the impedance. It is easy to see
that this is ω = 1√

2LC
. This makes the reactance vanish, so we have an current with amplitude

I =
E
R
. (2.4.49)

After flipping the switch to B, the resistor is shorted out and we have an LC circuit, so no power
is dissipated.

With the switch in the middle position, the impedance is

Z = R+ iωL+
1

iωC
= R− i

√
L

2C
. (2.4.50)

We thus need √
R2 +

L

2C
= 2R, (2.4.51)

which implies R =
√

L
6C .

If we run a current I through a solenoid with N turns over a length ℓ, the magnetic field within
the solenoid will be

B =
4πNI

ℓc
x̂. (2.4.52)

From Faraday’s law, we find

L =
4πN2

ℓc2
A, (2.4.53)

where A is the cross-sectional area. Thus, A = Lℓc2

4πN2 .

Problem 2.20 (M10E3)
An induction motor consists of two elements. The “stator” produces a time dependent magnetic
field with a direction that rotates with angular frequency ωs, determined by the frequency of the
AC current source. Take it to be

(Bx(t), By(t), Bz(t)) = B0(cosωst, sinωst, 0). (2.4.54)

The second component is the rotor, which in one design resembles a cylindrical “cage” that is
free to rotate about its axis (the z-axis), formed by N ≫ 1 equally spaced conducting bars of
length ℓ, each with resistance R, connected by a metal ring of radius r at each end of the cylinder
(which has negligable resistance).

z-axis

each bar has resistance R

conducting
loops at
ends have
negligible
resistance
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Electrical currents in the cage may be described as N independent current loops, each one defined
by two adjacent bars, connected by the rings at each end of the cage. Assume the self-inductance
and mutual inductance of these loops are negligible (much less than R/ωs). The positions of the
bars are defined by the line segments

(x, y, z) = (r cos θj , r sin θj , z), 0 < z < L, j = 1, 2, . . . , N, (2.4.55)

with θj = 2πj/N + ωrt (the rotor rotates with angular velocity ωr ̸= ωs).

a) As a function of time, what is the induced emf across bar j?

b) Find the time-averaged torque exerted on the rotor as a function of ωr.

The flux through bar j is

Φj = B0 cos((ωs + ωr)t+ 2πj/N)L
2πr

N
, (2.4.56)

so the induced emf is

Ej =
2πrLB0(ωs + ωr)

Nc
sin((ωs + ωr)t+ 2πj/N). (2.4.57)

The current through the jth bar is

Ij =
Ej − Ej−1

R
=

4π2rLB0(ωs + ωr)

N2Rc
cos((ωs + ωr)t+ 2πj/N), (2.4.58)

and the force on this current is

Fj =
1

c
IjLẑ×B =

4π2rL2B0(ωs + ωr)

N2Rc2
cos((ωs+ωr)t+2πj/N)×(− sinωst, cosωst, 0). (2.4.59)

The torque on the jth bar will be

τj =
4π2r2L2B0(ωs + ωr)

N2Rc2
cos2((ωs + ωr)t+ 2πj/N)ẑ, (2.4.60)

and so the time-averaged total torque is

⟨τ ⟩ = 4π2r2L2B0(ωs + ωr)

2NRc2
. (2.4.61)

2.5 Electromagnetic Waves

Changing magnetic fields induce electric fields. Changing electric fields induce magnetic fields.
This could get real complicated, real fast.
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Figure 2.9: An electromagnetic plane wave.

And it does, but that’s okay. Taking the curl of Faraday’s equation in vacuum, we find

1

c2
∂2E

∂2t
= ∇2E. (2.5.1)

Likewise, taking the curl of Ampére’s equation in vacuum, we find

1

c2
∂2B

∂2t
= ∇2B. (2.5.2)

This is the wave equation for a wave that propagates at speed c. Fiat lux and all that crap.

The ansatz E = E0e
i(k·x−ωt) solves the equation whenever ω2 = c2k2; to satisfy Gauss’s law, we

additionally need k · E0 = 0. This is called a plane wave. The corresponding solution for B is
fixed by Maxwell’s equations to be B = B0e

i(k·x−ωt), where B0 = ck×E0
ω = k̂ × E0. Note that

the electric and magnetic fields in a plane wave have the same magnitude – after all, why wouldn’t
they? It would be pretty silly to use units where this isn’t the case.

The wavevector k specifies the direction of propagation, and the fields are both perpendicular to
k. Both fields oscillate in phase with one another, in time and in space. The geometry is depicted
in Figure 2.9.

Problem 2.21 (M07E3)
A plane electromagnetic wave with electric field E0 and frequency ω is incident at normal inci-
dence on a metal film with conductivity σ, ϵ = 1 and µ = 1.

a) Calculate the electric and magnetic fields as a function of distance x into the conductor.

b) Show that the energy lost by the electromagnetic wave in a small distance ∆x inside the
conductor is equal to the ohmic heat deposited by the electromagnetic wave in that distance.
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We derived the wave equation for the electromagnetic field in a vacuum, but now we are in a
conductor with j = σE. Carrying through the derivation as before, we find

∇2E =
1

c2
∂2E

∂2t
+

4πσ

c2
∂E

∂t
,

∇2B =
1

c2
∂2B

∂2t
+

4πσ

c2
∂B

∂t
.

(2.5.3)

Let the surface of the conductor be the yz plane, and let k = kx̂. The fields on the surface of the
conductor from the incident plane wave will be E = (E0ŷ)e

−iωt and B = (E0ẑ)e
−iωt. Clearly

continuity requires that the wave which propagates into the conductor also has frequency ω, but
its wavevector can be k′ = k′x̂. Substituting (E0x̂)e

i(k′·x−ωt), we have

k′ =
1

c

√
ω2 + 4πiσω. (2.5.4)

Thus, if we move a distance x into the conductor, the fields are

E = (E0ŷ)e
i(k′x−ωt),

B = (E0ẑ)e
i(k′x−ωt).

(2.5.5)

Since k′ is complex, there will be dissipation as well as oscillation as the wave penetrates.

Letting Im k′ = κ, the energy density of the wave is

u =
1

8π
(E2 +B2) =

E2
0

4π
e−2κx. (2.5.6)

Thus, the energy lost per unit volume is approximately E2
0

2π κ∆x for small ∆x. Assuming rπσ ≪ ω,
we have κ ≈ 2πσ

c , so this is
∆u ≈ −σ

c
E2

0∆x. (2.5.7)

The power dissipated in a cube of conductor with side length d is

P = V I ≈ (E0d)(σE0d
3) = σE0d

3, (2.5.8)

so the power dissipated per volume is σE0 near the surface. The time the wave has spent in the
conductor is ∆x

c , so the total energy dissipated as ohmic heat indeed balances the energy lost to
current.

Problem 2.22 (J99E1)
It is well known that a charged particle cannot be held at rest by purely electrostatic fields.
In your answers below, you will give a (simple) classical explanation of how a neutral atom of
polarizability α can be “trapped” at the focus of a laser beam.

a) First, ignore magnetic interactions, and deduce that there is a (time-averaged) trapping force
dependent on the electric field of the laser.
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b) Atoms have some probability of absorbing photons from the laser beams, thereby being kicked
along the direction of the beam. This processes can be modelled classically by supposing that
the polarizability of the atom has an imaginary part: α = α′ + iα′′. Deduce the force on an
atom along the direction of propagation of a linearly polarized plane electromagnetic wave in
terms of α′′, the imaginary (absorptive) part of the polarizability.

c) For an idealized atom with a single natural frequency ω0, deduce the ratio α′/α′′ at the
frequency ω for which the real part, α′, of the polarizability is a maximum. For this, you
may use a classical model of an atom as an electron on a spring of frequency ω0, subject to
a damping force −γmẋ, where γ ≪ ω0 is the reciprocal of the lifetime of the ‘excited state’.

In practice, the trapping force a) must be larger than the longitudinal force b). This requires
the laser beam to be tightly focused.

Let the electric field of the laser be E = E0e
i(k·x−ωt), and so the atom will have a dipole moment

p = αE0e
i(k·x−ωt). The potential energy of the atom in the field is given by

U = −p ·E = −αE2
0 cos

2(k · x− ωt), (2.5.9)

where we have used the real parts of p and E. Time-averaging, we find ⟨U⟩ = −1
2αE

2
0 . For a

plane wave this would be a constant, but we are actually working with a highly focused laser
beam. We should replace E2

0 by the intensity I of the beam, which has a maximum at the
position of the atom. Then indeed there is a time-averaged trapping force

⟨F ⟩ = −1

2
α∇I. (2.5.10)

Now let the polarizability be α = α̃eiθ. Then we have

U = −p ·E = −α̃E2
0 cos(k · x− ωt) cos(θ + k · x− ωt) (2.5.11)

= −α′E2
0 cos

2(k · x− ωt) + α′′E2
0 sin(2(k · x− ωt)). (2.5.12)

The second term leads to a longitudinal component in the force,

F = −2α′′E2
0k cos(2(k · x− ωt)). (2.5.13)

This vanishes in the time average, but if it is too large it could knock the atom out of the
potential well.

If we treat an atom as an electron behaving according to

ẍ+ γẋ+ ω2
0x = −E0

m
eiωt, (2.5.14)

we can use the ansatz x = x0e
iωt and solve, obtaining

x(t) = −E0

m

1

ω2
0 − ω2 − iγω

eiωt. (2.5.15)
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The polarizability is then
α =

1

m

1

ω2
0 − ω2 − iγω

. (2.5.16)

Maximizing the real part, we find ω =
√
ω2
0 − γω0, and substituting this in we find

α ∝ 1

γω0 − iγ
√
ω2
0 − γω0

, (2.5.17)

and it follows that

α′/α′′ =

(
1− γ

ω0

)−1/2

. (2.5.18)

Since γ ≪ ω0, we see that the real and imaginary parts of the polarizability are nearly equal in
magnitude.

Problem 2.23 (J99E2)
When a charged particle (of mass m and charge e) interacts with a linearly polarized plane wave
(with electric field Ex = E0 cos(kz−ωt)), the particle’s motion includes a transverse oscillation.
In the frame in which the particle is at rest on average, the motion is purely transverse if
eE0/mωc ≪ 1, as may be assumed. Hence, the particle has transverse momentum, while the
wave carries only longitudinal momentum. How is Newton’s 3rd law satisfied in this situation?

The friends are invisible and all around us; momentum will be conserved if we properly account
for the momentum due to the field of the particle. One might be tempted to work out the
magnetic field of the particle, but the argument needs to work for a particle of arbitrarily large
mass. If we take m→ ∞, the particle will have negligible velocity and won’t generate a B field.
The extra momentum should instead come from the interaction of the particle’s E field with the
B field of the wave, given by

gextra =
1

4πc

( e
r2

r̂
)
× (E0 cos(kz − ωt)ŷ) =

eE0

4πc
cos(kz − ωt)

xẑ − zx̂

(x2 + y2 + z2)3/2
. (2.5.19)

Upon integration, most terms vanish; the only one which can survive is the one proportional to
z sin(kz) sin(ωt). We find

Px,extra = −eE0

4πc
sin(ωt)

ˆ
d3r

z sin(kz)

r3
. (2.5.20)

We can perform the integral in spherical coordinates, givingˆ
d3r

z sin(kz)

r3
= 2π

ˆ ∞

0
r2 dr

ˆ 1

−1
d(cos θ)

cos θ sin(kr cos θ)

r2
(2.5.21)

= 2π

ˆ ∞

0
dr

2 sin(kr)− 2kr cos(kr)

k2r2
(2.5.22)

= 2π

(
−2 sin(kr)

k2r

)∞

0

(2.5.23)

=
4π

k
, (2.5.24)



2.5. ELECTROMAGNETIC WAVES 89

which gives Px,extra = − eE0
ω sin(ωt). This exactly cancels the transverse mechanical momentum.

In addition to the frequency and intensity, electromagnetic waves have a degree of freedom in their
polarization. We have thus far taken the electric field to point along the x̂ axis, but it can point
anywhere in the plane perpendicular to k. The magnetic field will always be in the direction k̂×E,
so we only need to specify the direction of the electric field to fully specify the polarization.

In addition to pure vertical or horizontal polarization, we could have vertical and horizontal waves
superimposed with a phase shift between them, so that the electric field is

E = E0x̂ cos(kz − ωt) + E1ŷ cos(kz − ωt+ ϕ). (2.5.25)

If we think of this as the real part of a complex function as usual, then we find

E = (E0x̂+ eiϕE1ŷ)e
i(kz−ωt). (2.5.26)

We can thus think about one of these phase-shifted superpositions as having a complex polarization
vector. Generically these states are elliptically polarized, meaning the electric field vector will trace
out an ellipse at any given point. If ϕ = nπ the wave is linearly polarized; if ϕ =

(
n+ 1

2π
)
, the

wave is circularly polarized.

Problem 2.24 (M03E3)
The E-vector of a plane electromagnetic wave propagating along the z-axis and having a polar-
ization vector e = (αx, αy, 0) can be written

E(r, t) = E(αxx̂+ αyŷ)e
i(kz−ωt) (2.5.27)

(the polarization vector is taken to be of unit length, α · α∗ = 1). In free space, the dispersion
relation is ω = ck and the wave propagates with both phase and group velocity equal to c.

Now let the wave propagate through a dilute plasma containing a density N of free mobile
electrons of mass m and charge e (along with a background of compensating positive charge
taken to be so massive as to be fixed in place). By solving for the motion of an electron in the
electric field of the propagating wave (i.e. ignoring the effect of the wave’s B-field on the motion)
one can infer a polarization density P ∝ E. This in turn allows us to infer a frequency-dependent
dielectric constant via

D = E + 4πP = ϵ(ω)E. (2.5.28)

The index of refraction of plasma is then given by n(ω) =
√
ϵ.

a) Use this line of argument to compute the frequency dependence of the index of refraction n(ω)
of a plasma. Turn your result into a dispersion relation ω(k) and find the limiting frequency
ωp as the wavelength of the wave goes to infinity. This cutoff frequency, below which waves
cannot propagate, is called the plasma frequency.

b) Now let the plasma be subject to a static magnetic field B0ẑ in the direction of propagation of
the wave. Also assume that the electrons have some kinetic energy so that, in the absence of
any other perturbation, they execute circular motion about the static magnetic field lines at
the Larmor frequency ωL = |eB0|/m. Extend your calculation of the dielectric constant of the
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plasma to this new case. The response is different for different states of circular polarization
so, for definiteness, analyze the case of right circular polarization of the propagating wave
(α = (x̂+ iŷ)/

√
2).

c) Find the lowest frequency at which such a wave can propagate. Express your answer in terms
of ωp and ωL.

The magnitude of each electron’s oscillation is eE
mω2 . Since the position will be opposite the

acceleration, the electric dipoles actually enhance the electric field, meaning we have a negative
electric susceptibility,

P = −Ne2

mω2
E. (2.5.29)

The dielectric constant is ϵ(ω) = 1− 4πNe2

mω2 . Therefore,

ω =
c

n(ω)
k ≈ c

(
1− 4πNe2

mω2

)−1/2

k. (2.5.30)

Solving for ω, we have

ω2 = c2k2 +
4πNe2

m
. (2.5.31)

The limiting frequency as k → ∞ is ω2
p =

4πNe2

m .

We could think of the previous part as a driven free particle,

ẍ = −eE
m

sin(ωt), (2.5.32)

whereas with the Larmor oscillations in circular polarization we have

z̈ + ω2
Lz = −eE

m

1 + i√
2
eiωt, (2.5.33)

where z = x+ iy. This is solved by

z =
eE

m(ω2 − ω2
L)

1 + i√
2
eiωt. (2.5.34)

The dielectric constant is then

ϵ = 1− 4πNe2

m(ω2 − ω2
L)

= 1−
ω2
p

ω2 − ω2
L

. (2.5.35)

The lowest possible frequency occurs when ϵ = 0, which corresponds to ω =
√
ω2
L + ω2

p.
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Problem 2.25 (J15E2)
A Fresnel rhomb is an optical device used to convert linearly polarized light into circularly
polarized light. As shown in Fig. 2.10, light hits the surface of the rhomb at normal incidence, it
then undergoes two total internal reflections inside the rhomb, and then leaves the rhomb again
normally.

θi
θi

Figure 2.10: A Fresnel rhomb.

The total internal reflections are such that each reflection generates a phase difference of 45◦

between the component of the light-wave that is parallel and the component that is perpendicular
to the plane of incidence (the plane of the page in Fig. 2.10), and so after two internal reflections
a lightwave that was originally linearly polarized at 45◦ with respect to the plane of incidence
becomes circularly polarized.

a) For a single internal reflection, find the phase shift that the reflected wave acquires relative to
the incident wave assuming the electromagnetic wave is polarized in the plane of incidence.

b) Calculate the phase shift that the reflected wave acquires relative to the incident wave when
the electromagnetic wave is polarized perpendicular to the plane of incidence.

c) If each of the two total internal reflections in a Fresnel rhomb occurs at an angle of incidence
of θi = 53.3◦, calculate the index of refraction n of the Fresnel rhomb relative to that of the
surrounding medium.

This is annoying any way you do it. There are Fresnel formulas that give the phase shifts for any
kind of reflection/transmission situation, but I’d rather memorize Hamlet. You might think this
case is significantly easier because there is only a reflected wave, but actually there will be an
evanescent wave which is strongly damped but nonetheless penetrates the boundary. So in order
to work out the boundary conditions, we have to pretend there is a transmitted component.

Since we are in a dielectric medium, the Maxwell equations become

∇ ·D = 0, ∇×E = −1

c

∂B

∂t
,

∇ ·B = 0, ∇×H =
1

c

∂D

∂t
.

(2.5.36)

Using D = ϵE and H = µ−1B, we find the wave equation with phase velocity c√
ϵµ ≡ c

n , and so
|B| = n|E|.
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We can use continuity of tangential components to fields to fix the phase shift. If we draw small
rectangles around the boundary and integrate Faraday’s and Ampére’s laws, we find n×∆E =
n×∆H = 0. This means that only the normal components of E and H can change across the
boundary.

When the electric field is polarized in the plane of incidence, continuity of the tangential electric
field at the reflection point requires

Eie
iωt cos θi − Ere

i(ωt+ϕr) cos θi = Ete
i(ωt+ϕt) cos θt, (2.5.37)

where we have taken the normal components of Ei and Er to both point into the medium.
Similarly, continuity of the tangential component of H requires

n

µ

(
Eie

iωt + Ere
i(ωt+ϕr)

)
= Ete

i(ωt+ϕt). (2.5.38)

Eliminating the transmitted field, we find

Er
Ei
eiϕr =

cos θi − n
µ cos θt

cos θi +
n
µ cos θt

. (2.5.39)

Now we have to determine cos θt. For this we can use Snell’s law, n sin θi = sin θt. This implies

cos θt =
√

1− n2 sin2 θi = i
√
n2 sin2 θi − 1. (2.5.40)

Since we have total internal reflection, n sin θi > 1 and so cos θt is pure imaginary. It follows
that Er

Ei
eiϕr = a−ib

a+ib , so indeed Er = Ei, and

ϕr = −2 tan−1 b

a
= −2 tan−1 n

√
n2 sin2 θi − 1

µ cos θi
. (2.5.41)

Now we take the electric field to be perpendicular to the plane of incidence, so we move some
cosines around. The boundary conditions are now

Eie
iωt + Ere

i(ωt+ϕr) = Ete
i(ωt+ϕt), (2.5.42)

n

µ

(
Eie

iωt cos θi − Ere
i(ωt+ϕr) cos θi

)
= Ete

i(ωt+ϕt) cos θt. (2.5.43)

Again eliminating Et, we find
Er
Ei
eiϕr =

cos θt − n
µ cos θi

cos θt +
n
µ cos θi

. (2.5.44)

Again cos θt is pure imaginary, and so

ϕr = 2 tan−1 n cos θi

µ
√
n2 sin2 θi − 1

. (2.5.45)

In order to convert linearly polarized light into circularly polarized light, the parallel and per-
pendicular phases should have a difference of nπ + π

4 (so that after two reflections the phase
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difference is π
2 ). Note that at θi = π

2 , we have a phase difference of π, and this increases as we
decrease θi, so in our case we want a phase difference of 5π

4 . Using this we can write

tan
5π

8
= tan

∆ϕ

2
=

(
n cos θi

µ
√
n2 sin2 θi − 1

+
n
√
n2 sin2 θi − 1

µ cos θi

)(
1− n2

µ2

)−1

(2.5.46)

=
nµ(n2 − 1) sin θi tan θi

µ2
√
n2 sin2 θi − 1

1

1− n2/µ2
. (2.5.47)

We are given the angle of incidence, and presumably the rhomb has µ ≃ 1 (most materials do),
so we can solve for n under this assumption and find

n = − tan(5π/8)

sin(θi)
√
tan2 5π

8 − tan2 θi

. (2.5.48)

Substituting θi = 53.3◦ this becomes n ≈ 1.5.

2.6 Radiation

Haters gonna hate. Accelerating charges gonna radiate.

That pretty much sums it up, but to be more precise, consider a point charge accelerating through
space along a worldline yµ(τ). We’re going to derive its electromagnetic field, called the Liénard-
Wiechert field, and find the power it radiates at large distances. This is one of those times when
shying away from relativity is a really bad idea, because relativity makes this problem much easier.
The potential ϕ and vector potential A can be combined into a single four-vector Aµ = (ϕc,A).
For a point charge at rest, this is given by

Aµ =
q

r
(∂t)

µ. (2.6.1)

Now we generalize this to a particle with world-velocity λµ. Information about electromagnetic
fields travels at the speed of light, so the field at xµ should depend only on the data at the unique
position yµ on the worldline of the charge such that (x− y)µ is a future-directed null vector. This
is called the retarded time prescription.

Clearly we should replace (∂t)
µ by λµ evaluated at the retarded time. We would like to replace the

distance r by the distance in a frame comoving with the charge, and since we are looking at the
charge at a retarded time, we can equally well use the difference in time in a frame comoving with
the charge, which is −λµ(x− y)µ. So in total, we have

Aµ =
q

r
λµ, (2.6.2)

where r ≡ −λν(x − y)ν and everything is evaluated at the retarded time. This is the covariant
expression for the Liénard-Wiechert field.

It is helpful to define a null vector field

kµ =
(x− y)µ

r
, (2.6.3)
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which points along light rays emitted on the worldline. It is normalized such that kµ∂µkν = 0.
With this and a few other identities, one can show that

Fµν = ∂µAν − ∂νAµ =
q

r

(
kµ
(
λ̇ν + λν

(
r−1 − k · λ̇

))
− (µ↔ ν)

)
. (2.6.4)

Now we can compute the power radiated by this field by integrating the Poynting vector. If we
integrate over a sphere far from the particle, then only terms of order r−2 in the Poynting vector
matter, which means that only terms of order r−1 in Fµν matter. We may thus define

Fµνrad =
q

r

(
kµ
(
λ̇ν − λν(k · λ̇)

)
− (µ↔ ν)

)
. (2.6.5)

This part of the field is proportional to λ̇, as is to be expected. From a relativistic standpoint, the
Poynting vector comes from the stress-energy tensor,

Tµν =
1

4π

(
FµαFα

ν − 1

4
ηµνFαβFαβ

)
. (2.6.6)

The Poynting vector is the spatial part of Tµνλν . From (2.6.5), we have

Tµνradλν =
q2

4πr2

(
λ̇µ + (kµ − λµ)(k · λ̇) + kµ

(
(k · λ̇)2 − λ̇ · λ̇

))
. (2.6.7)

At last we restrict our attention to a uniformly accelerated charge. In its instantaneous rest frame
λµ is timelike and kµ = (−1,−r̂), so k · λ̇ = −r̂ · a. The Poynting vector is thus

S =
q2

4πr2
(
a+ r̂

(
−r̂ · a+ |r̂ × a|2

))
. (2.6.8)

The total power radiated is

P =
q2

2

ˆ 1

−1
d(cos θ)

(
a2 sin2 θ

)
. (2.6.9)

The first term vanishes under integration, and we are left with

P =
2q2a2

3c3
, (2.6.10)

where we have restored factors of c by dimensional analysis. This the Larmor formula for the power
radiated by an accelerating charge.

Problem 2.26 (M08E2)
A particle with charge e starting at rest is given uniform acceleration, a, for a time ∆t to
non-relativistic energies.

a) Compute the power radiated per unit solid angle by the electric charge as a function of the
angle θ measured with respect to its direction of acceleration.

b) Assume the time ∆t is infinitesimally short. Compute the total energy radiated per unit wave-
length as a function of the final velocity v and wavelength λ of the radiated electromagnetic
waves.
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The answer to part (a) can be read off directly from the discussion above:

dP

dΩ
=
e2a2

4πc3
sin2 θ. (2.6.11)

The energy will be radiated by electromagnetic waves with some frequency spectrum, and we
need to determine this frequency spectrum. The total energy is

E =

ˆ
dt dΩ

dP

dΩ
=

2e2

3c3

ˆ
dt a(t)2. (2.6.12)

The Fourier transform of a(t) is

f(ω) =

ˆ
dt eiωta(t) =

2a

ω
sin

(
ω∆t

2

)
eiϕ, (2.6.13)

where ϕ is some phase. Then substituting a(t) = 1
2π

´
dω e−iωtf(ω) we have

E =
4e2a2

3πc3

ˆ
dω

sin2
(
ω∆t
2

)
ω2

, (2.6.14)

and so
dE

dω
=

4e2a2

3πc3ω2
sin2

(
ω∆t

2

)
. (2.6.15)

Since ω = 2πc
λ , this can be expressed as

dE

dλ
=

2e2a2

3π2c4
sin2

(
πc∆t

λ

)
. (2.6.16)

Problem 2.27 (M00E2)
A particle of mass m and charge q is released from rest from a distance z0 above an infinite
grounded conducting plane. Neglect relativistic effects and gravity.

a) How long will it take for the particle to hit the plane? (Neglect radiation loss.) You may
leave your answer in terms of a dimensionless integral.

b) What is the power radiated as a function of z?
Now consider the conducting plane to be replaced by a semi-infinite dielectric ϵ. (That is, for
z > 0, there is a vacuum, and for z < 0, space is filled with the dielectric.)

c) Calculate the force on the charge q when it is a distance z0 above the plane.
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When the charge is at a height z, there will be an image charge at −z. Thus the total energy of
the system is − q2

4z20
, and so the velocity of the charge is

v =

(
q2

2m

(
1

z2
− 1

z20

))1/2

. (2.6.17)

The time to reach the plane is

T =

ˆ z0

0

dz

v
=

√
2mz0
q

ˆ z0

0

(
z20
z2

− 1

)−1/2

dz. (2.6.18)

Letting u = (z/z0)
2, this is

T =

√
2mz20
2q

ˆ 1

0
(1− u)−1/2 du =

√
2mz20
q

. (2.6.19)

The acceleration at z is q2

4z2m
, so the power radiated is

P (z) =
q6

24m2z4c3
. (2.6.20)

When z < 0 is filled with dielectric, there will be an image charge 1−ϵ
1+ϵ induced at z = −z0. Thus,

the force will be
F = −1− ϵ

1 + ϵ

q2

4z20
ẑ. (2.6.21)

Problem 2.28 (J06E3)
A classical particle of mass m and charge q moves in an isotropic three-dimensional harmonic
potential with “spring constant” K such that its trajectory is nearly circular at all times.

a) What is the characteristic time (time constant) for the decay of the kinetic energy of this
system due to electromagnetic radiation?

b) What condition(s) must be satisfied so that the fraction of the energy radiated per period of
the motion is small (i.e. so that the the quality factor of this oscillator remains high), and
hence the trajectory is indeed nearly circular?

c) Verify that this requirement implies that the radiation-reaction force is small compared to
the spring force on the particle.

The acceleration of the particle is KR
m , where R is the radius of the circular orbit, and so it will

radiate with power

P =
2q2

3c3
K2R2

m2
. (2.6.22)
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The kinetic energy is 1
2mv

2 = K
2 R

2, and so the time constant is

τ =
3m2c3

4Kq2
. (2.6.23)

In order for the fraction of energy radiated per period to be small, the orbital period 2π
√

m
K

should be much less than τ , or
3c3

8πq2

√
m3

K
≫ 1. (2.6.24)

The radiation reaction force is 2q2

3c3
ȧ. Expressing a in terms of the energy as

a =
KR

m
=

√
2EK

m
, (2.6.25)

we have

ȧ =

√
K

2E
P =

2q2

3c3
K2R

m3
. (2.6.26)

The radiation-reaction force is

F =
2q2

3c2
ȧ =

(
2q2

3c3

)2
K2R

m3
. (2.6.27)

The force is KR, so for the radiation reaction force to be small compared to the spring force we
must have (

3c3

2q2

)2
m3

K
≫ 1, (2.6.28)

which up to constants is the square of (2.6.24).

It’s time to mention something that probably ought to have come up a bit earlier than this: the
multipole expansion. First, as a warmup, let’s look back at the electric potential of a static charge
configuration,

ϕ(r) =

ˆ
ρ(r′) dr′

|r − r′|
. (2.6.29)

Most of the time, when we have some charge, ϕ ∼ 1
r . But when the total charge is zero, we’ve seen

in several examples that ϕ ∼ 1
r2

instead; in this case, ϕ is proportional to the dipole moment. We
can understand this in a very general way by expanding the denominator in the integral. We have

ϕ(r) =

ˆ
ρ(r′) dr′√

r2 + r′2 − 2r · r′
(2.6.30)

=
1

r

ˆ
ρ(r′)

(
1− 2

r′

r
cos θ +

(r′)2

r2

)−1/2

dr′ (2.6.31)

=
1

r

ˆ
ρ(r′)

(
1 +

r′

r
cos θ +

1

2

(
r′

r

)2 (
3 cos2 θ − 1

)
+ . . .

)
dr′. (2.6.32)
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The first term gives Q
r , where Q is the total charge. This is the monopole field, and if it is nonzero

it dominates at large r. The next-to-leading field is
´
ρ(r′)r′ cos θ dr′

r2
=

p · r̂
r2

, (2.6.33)

where p =
´
ρ(r′)r′ dr′ is the dipole moment. For the quadrupole field, we define a tensor

Qij =
1

2

ˆ
ρ(r′)

(
3r′ir

′
j − δij

)
dr′, (2.6.34)

so that the field becomes Qij r̂ir̂j
r3

. In general, the expansion of the denominator gives Legendre
polynomials in cos θ, and integrating order by order gives the multipole expansion of the electric
potential.

So much for that. It turns out that radiation works in a similar but somewhat more complicated
way. We start with something that, again, probably should have been mentioned before (but also
it’s sort of obvious when you think about it): the electric and magnetic potentials in the general
case are the integrals of the sources at retarded time. That is,

ϕ(r, t) =

ˆ ρ
(
r′, t− |r−r′|

c

)
|r − r′|

dr′, A(r, t) = −1

c

ˆ j
(
r′, t− |r−r′|

c

)
|r − r′|

dr′. (2.6.35)

Note that we’re making a gauge choice (Coulomb gauge, ∇ · A = 0) in order to write the fields
this way. If we have general, wibbly wobbly sources, it will be hard to integrate out the fields (not
to mention the sadistic complications which come from including back-reactions). So, let’s make a
simplifying assumption ρ(r, t) = ρ(r)eiωt, and similarly for j. Then the retarded time prescription
turns into

ϕ(r, t) = eiωt
ˆ
ρ (r′) e−ik|r−r′|

|r − r′|
dr′, A(r, t) = −e

iωt

c

ˆ
j (r′) e−ik|r−r′|

|r − r′|
dr′. (2.6.36)

It’s tempting to expand the denominator like before, but this would be a mistake. This is radiation,
so we’re free to take r ≫ r′ and focus on the far field. Then the leading variations will come from
the exponential, the parameter of which varies on the scale of r′/λ, where k = ω/c = 2π/λ. In
summary, we assume r′ ≪ λ ≪ r and pull |r − r′| ∼ r−1 out of the integral. To deal with the
exponential, we approximate |r − r′| ≈ r − r′·r

r , so we have

ϕ(r, t) =
ei(ωt−kr)

r

ˆ
ρ
(
r′
)
eikr̂·r

′
dr′ A(r, t) = −e

i(ωt−kr)

rc

ˆ
j
(
r′
)
eikr̂·r

′
dr′. (2.6.37)

Now we can expand the exponentials and look at the potentials term-by-term to find the multipole
contributions to the radiation field. Expanding two different integrals sounds annoying, so we start
by noting that far from the sources, ∂E

∂t = c∇ ×B. Since both fields have eiωt time dependence,
this gives

E =
c

iω
∇×B =

1

ik
∇× (∇×A). (2.6.38)

This means we can ignore ϕ altogether and derive everything from the expansion of A. Let’s start
with the first term,

A1 = −e
i(ωt−kr)

rc

ˆ
j
(
r′
)
dr′. (2.6.39)
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Integrating by parts, this becomes

A1 =
ei(ωt−kr)

rc

ˆ
r′
(
∇ · j

(
r′
))
dr′. (2.6.40)

Using the conservation of charge ∂ρ
∂t +∇ · j = 0, and recalling ρ(r, t) = eiωtρ(r), this becomes

A1 = − ike
i(ωt−kr)

r

ˆ
ρ
(
r′
)
r′ dr′ = − ik

r
p
(
t− r

c

)
. (2.6.41)

This term is thus called the dipole radiation term. As a quick check, we compute the fields

B1 = ∇×A = −k
2

r

(
r̂ × p

(
t− r

c

))
+O

(
r−2
)
, E1 =

1

ik
∇×B1 =

k2

r

(
r̂ ×

(
r̂ × p

(
t− r

c

)))
.

(2.6.42)
The Poynting vector is

S1 =
c

4π
E1 ×B1 =

ω4|p|2

4πr2c3
sin2 θr̂, (2.6.43)

so the total power radiated is P1 =
ω4

3c3
|p|2. Indeed, if we model the dipole as a charge q oscillating

between z = ±ℓ with frequency ω, the Larmor formula gives

P =
2q2

3c3
⟨a2⟩ = q2ℓ2ω4

3c3
, (2.6.44)

and since p = qℓ the two results agree.

Cool. So, next term. It’s harder, but that’s life. We have

A2 = − ike
i(ωt−kr)

rc

ˆ
j
(
r′
) (

r̂ · r′
)
dr′. (2.6.45)

Let’s meditate on the integrand a bit. It looks like j weighted by cos θ, where θ has the obvious
meaning. This is sort of like the electric dipole moment, where ρ is weighted by cos θ, except it’s
j, so maybe it’s a magnetic dipole moment. Indeed, the magnetic dipole moment is supposed to
be IA for a current loop enclosing area A, and we recover that via Stokes’ theorem if we define

µ =
1

2

ˆ
r′ × j

(
r′
)
dr′. (2.6.46)

This won’t quite do, since our integrand is proportional to j. But we have

r̂ ×
(
r′ × j

)
= (j · r̂) r′ − j

(
r̂ · r′

)
, (2.6.47)

and voilá, the second term on the right is the integrand (with a sign). It follows that we can express
the integrand as

j
(
r′
) (

r̂ · r′
)
= −1

2
r̂ ×

(
r′ × j

)
+

1

2

(
(j · r̂) r′ + j

(
r̂ · r′

))
. (2.6.48)

The first term is related to the magnetic dipole, and (spoiler) the second term is related to the
electric quadrupole.

Indeed, the integral coming from the first term is

A2m =
ikei(ωt−kr)

rc
n̂× 1

2

ˆ
r′ × j

(
r′
)
dr′ =

ik

rc
r̂ × µ

(
t− r

c

)
. (2.6.49)
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This looks a lot like the electric dipole field, which is nice. The fields are

B2m = −k
2

rc
r̂ ×

(
r̂ × µ

(
t− r

c

))
, E2m = r̂ ×B2m. (2.6.50)

This gives a Poynting vector of

S2m =
c

4π
E2m ×B2m =

k4|µ|2

4πr2c
sin2 θr̂, (2.6.51)

and so the total power is P2m = ω4µ2

3c5
.

The multipole expansion is only useful if it gives terms which decrease in intensity, so we should
compare P2m to P1. To make a good comparison, we fix the current j ∼ ωp ∼ µ

a . Then

P2m

P1
=

µ2

c2p2
∼
(a
λ

)2
. (2.6.52)

We have already assumed a≪ λ, so the expansion is indeed a good one.

To finish off, we get the electric quadrupole field from the other term in our integrand for A2. We
have

A2q = − ike
i(ωt−kr)

2rc

ˆ (
j
(
r̂ · r′

)
+ r′ (j · r̂)

)
dr′. (2.6.53)

By writing
jkr̂jr

′
j = ∇′

i

(
jir̂jr

′
jr

′
k

)
− r′kr̂jr

′
j∇′

iji − r′kji∇′
i

(
r̂jr

′
j

)
, (2.6.54)

we find ˆ
j
(
r̂ · r′

)
dr′ = −

ˆ
r′
(
r̂ · r′

) (
∇′ · j

)
dr′ −

ˆ
r′ (j · r̂) dr′. (2.6.55)

Substituting this into A2q and using ∇ · j = −∂ρ
∂t , there is a convenient cancellation and we find

A2q =
k2ei(ωt−kr)

2r

ˆ
r′
(
r̂ · r′

)
ρ
(
r′
)
dr′. (2.6.56)

This shows that we are dealing with something “electric,” but what about ”quadrupole”? Well,
remember that A2q is only defined up to a gauge, and also, we only care about fields at order 1

r .
If we add a vector proportional to r̂ to A2q, its curl will be unchanged at order r−1. So, we can
equally well write

A2q =
k2ei(ωt−kr)

3r
r̂i
ˆ

3r′ir
′
j − δij

2
ρ
(
r′
)
dr′ =

k2ei(ωt−kr)

3r
r̂iQij , (2.6.57)

where Qij is the electric quadrupole tensor.

All these fortuitous cancellations, gauge transformations, etc., are the result of a much deeper
mathematical fact. Even though we did a very different sort of expansion in the radiation case,
the fields are essentially forced to organize themselves into representations of the rotation group
SO(3), and this is the heart and soul of the multipole expansion. But enough of this for now.
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Problem 2.29 (J08E1)
An antenna consists of a circular wire loop of radius R, centered in the xy plane of a Cartesian
coordinate system. The current has the same amplitude, I = I(t), at all locations in the wire at
a given time t. There is no net electrical charge on the wire. Assuming that İ, the rate of change
of the current, is slow enough that magnetic dipole radiation dominates any higher multipoles,
calculate:

a) the vector potential A = A(r, t) and scalar potential ϕ at the location r and time t when
r ≫ cI/İ (specify your choice of gauge);

b) the magnetic and electric fields, B and E, at r and t;

c) the energy flux, S = S(θ, ϕ), as a function of the polar angles θ and ϕ;

d) the total radiated power P =
´
S sin θ dθ dϕ.

Retain enough terms of any expansion in powers of 1/r to account for radiation. Insofar as
possible, express your answers in terms of the magnetic dipole moment, m = πR2I/c, and its
time derivatives.

There is no net charge density on the wire, so ϕ vanishes. The vector potential for a magnetic
dipole is

A2m =
ik

rc
r̂ × u

(
t− r

c

)
=

1

rc2
r̂ × µ̇

(
t− r

c

)
, (2.6.58)

where we have used iω = µ̇
µ . The fields up to order r−1 are then

B = ∇×A2m = − ik

rc2
r̂ × (r̂ × µ̇) =

1

rc3
(µ̈− r̂(µ̈ · r̂)) , (2.6.59)

E =
1

ik
∇×B = − 1

rc3
r̂ × (µ̈− r̂(µ̈ · r̂)) , (2.6.60)

where µ is always evaluated at retarded time.

The energy flux is
S(θ, ϕ) = S · r̂ =

1

4πr2c6
µ̈2 sin2 θ. (2.6.61)

This gives a total radiated power

P =
2µ̈2

3c6
. (2.6.62)

Problem 2.30 (M99E1)
Electromagnetic radiation of wavelength λ is observed to originate from a system consisting of
an electrically charged sphere of radius R placed in a uniform magnetic field B and spinning
about its axis with a very large angular velocity ω. The spin axis of the sphere, which is free to
move, makes an angle α with the field direction. Assume R≪ λ.
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z

y

x

R

Spinning axis

α

a) Explain briefly why the system radiates electromagnetic energy.

b) Find in terms of the given quantities, not all of which may be necessary, the ratio Q/M of
the total charge Q to the mass M of the sphere assuming that both charge and mass are
uniformly distributed over its volume.

c) What is the polarization of the radiation field?

The system radiates because it precesses. When the spin axis is displaced at angle α from the
magnetic field, there is a resulting torque m×B on the magnetic moment m formed due to the
spin of the sphere. Since m ∝ Ls (the spin angular momentum), this torque keeps m spinning
around B. Since the magnetic moment is changing, we get magnetic dipole radiation.

In more detail, let m = gLs (we’ll compute g later). Then

dm

dt
= g

dLs
dt

= gm×B. (2.6.63)

This implies that gB is the precession frequency of the sphere. The wavelength of radiation
should be λ = 2π/k = 2πc/ω, and so we solve and find

g =
2πc

λB
. (2.6.64)

It remains to determine g in terms of Q and M . The angular momentum is

Ls = Iω =
2

5
MR2ω. (2.6.65)

The magnetic moment is a bit trickier. The charge density is ρ = 3Q
4πR3 . At radius r and angle

θ, we have a current loop with I = (rρ dr dθ)(ωr sin θ) and area πr2 sin2 θ, so the total magnetic
moment magnitude is

m = πρω

ˆ R

0

ˆ θ

0
r4 sin3 θ dθ dr =

2πρωR5

15
. (2.6.66)
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Thus, g = πρR3

3M = Q
4M , and hence

Q

M
=

8πc

λB
. (2.6.67)

Since the radiation is due to the changing magnetic dipole, the fields look just as they did in
the previous problem, where now µ̈ ∝ −(cosψx̂− sinψŷ). An observer at a point on one of the
poles will see circularly polarized light. Anywhere else, the light will be elliptically polarized in
some more complicated pattern.

2.7 Additional Problems

Problem 2.31 (J01E2)
A betatron is a device in which ultrarelativistic electrons are held in a circle of fixed radius R
(taken to be centered on the origin in the xy plane) by a magnetic field Bz(r, t) while their energy
is increased via a changing magnetic flux dΦ/dt = πR2dBavg,z/dt through the circle. Motion of
the electrons perpendicular to the circle is prevented by means that need not be considered here.

Deduce the relation between the magnetic field Bz at radius R and the magnetic field Bavg,z
averaged over the area of the circle. Also deduce the maximum energy E to which an electron
could be accelerated by a betatron in terms of Bz, dBavg,z/dt and R.

We have
γ
mv2

R
= e

v

c
B, (2.7.1)

so
v =

eBR

γmc
. (2.7.2)

The electrons are accelerated by the induced electric force, so

γm
dv

dt
=
eπR2

2πR

1

c

dBavg,z
dt

. (2.7.3)

Comparing these two equations, we have

dB

dt
=
γmc

eR

dv

dt
=

1

2

dBavg,z
dt

. (2.7.4)

If we assume the system starts at B = Bavg,z = 0, then B = 1
2Bavg,z for all times in order to

keep the electrons in a circle.

It would seem as though we can deposit an arbitrary amount of energy into the electrons, except
that they will also radiate with

P =
2e2

3c2

(
γ2
v2

R

)2

=
2e6B4R2

3m4c7
. (2.7.5)
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Thus, the electron cannot increase in energy once the energy input from the induced electric
field reaches this value. The energy input is

dE

dt
= v

eπR2

2πR

1

c

dBavg,z
dt

=
e2BR2

2γmc2
dBavg,z
dt

. (2.7.6)

Setting these equal we find

E = γmc2 =
3m4c7

4e4B3

dBavg,z
dt

. (2.7.7)

Problem 2.32 (M12E2)
Thomson scattering is the scattering of light from a free electron (no binding, no damping).
Derive the total cross section σ for Thomson scattering by treating the scattered radiation
generated by an electron in an electromagnetic plane wave. Assume that the speed of the
electron remains small: v ≪ c.

First we need to determine how the electron moves in the plane wave. Take the fields to be

E = E0e
i(kz−ωt), B = ẑ ×E. (2.7.8)

Assume the electron starts at rest at the origin at t = 0. The Lorentz force is

m
dv

dt
= e exp (i(kz − ωt))

(
E0 +

v

c
× (ẑ ×E0)

)
. (2.7.9)

Since v ≪ c, we can ignore the magnetic force. The average power radiated is thus

⟨P ⟩ = 2e2

3c3

⟨(
Re

dv

dt

)2
⟩

=
e4

3m2c3
E2

0 . (2.7.10)

The Poynting vector of the plane wave is c
4πE

2
0 ẑ, so this much power comes from an area

σ =
4πe4

m2c4
. (2.7.11)

Problem 2.33 (J11E1)
Electromagnetic radiation in TEM mode propagates along a coaxial waveguide consisting of two
concentric, right circular cylinders of infinite conductivity. The radius of the inner conductor is a,
and of the inner surface of the outer conductor is b. The region of the conductors corresponding
to negative values of z (the symmetry axis of the cylinders) is vacuum. The region at positive z
is filled with a uniform lossless dielectric, (dielectric constant ϵ). The wave is propagating only
in the positive direction in the dielectric, while there are incident and reflected waves in the
vacuum region. Assume the incident wave has peak electric field E0 at the surface of the inner
conductor, and oscillates with frequency ω.
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a) In terms of E0, a, b and any necessary constants for your system of units, find the time-
averaged power of the incident wave propagating in the vacuum side of the cable.

b) Calculate the electric and magnetic fields for the reflected, and transmitted waves. Specify
the amplitudes, and space and time dependence.

c) Find the average force per unit area on the dielectric interface at z = 0.

x

y
a

b

x

z

Conductors

Vacuum Dielectric

We are given that the electric and magnetic fields are transverse to the direction of propagation,
and we know that electric fields are normal to the surfaces of conductors, so E must point in
the radial direction. In order to be divergence free, it must fall off as 1

r . This fixes

E =
E0a

r
eiω(z/c−t)r̂, B =

E0a

r
eiω(z/c−t)θ̂, (2.7.12)

and so the Poynting vector is

⟨S⟩ = c

4π
⟨E ×B⟩ = E2

0a
2c

8πr2
ẑ. (2.7.13)

The total power is then

P =
E2

0a
2c

4
log

b

a
. (2.7.14)

To find the reflected and transmitted waves, we can think about some limiting cases. If ϵ = 1,
everything is transmitted. If ϵ = ∞, i.e. the dielectric is actually a conductor, then nothing
is transmitted and the reflected wave electric field is the negative of the incoming wave electric
field in order to satisfy the boundary condition. Furthermore, the reflection and transmission
coefficients will depend on the index of refraction, n =

√
ϵ. From these considerations, it sounds

like the reflected wave should be 1−
√
ϵ

1+
√
ϵ

times the incoming wave, and then conservation of energy
requires that the transmitted wave is 2

1+
√
ϵ

times the incoming wave. Explicitly, we have

Er =
1−

√
ϵ

1 +
√
ϵ

E0a

r
eiω(−z/c−t)r̂, Br = −1−

√
ϵ

1 +
√
ϵ

E0a

r
eiω(−z/c−t)θ̂, (2.7.15)

Et =
2

1 +
√
ϵ

E0a

r
eiω(z/c−t)r̂, Bt =

2

1 +
√
ϵ

E0a

r
eiω(z/c−t)θ̂. (2.7.16)
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The force on the interface comes from the change in the momentum of the reflected light, so we
have

2
|Sr · n̂|

c
=
E2

0a
2

4πr2
(1−

√
ϵ)2

(1 +
√
ϵ)2

. (2.7.17)

The average pressure is then

Pavg =
E2

0a
2

2π(b2 − a2)

(1−
√
ϵ)2

(1 +
√
ϵ)2

log
b

a
. (2.7.18)



Chapter 3

Quantum Mechanics

Little known historical fact: Planck and de Broglie and Schrödinger and Heisenberg and friends were
all big Dr. Seuss fans. One of their favorites was Wacky Wednesday. One day, they all decided to
write some Wacky Wednesday fan fiction together. Planck started it off: what if light was organized
into quanta of energy? This would be wacky and also solve the ultraviolet catastrophe. de Broglie
got a bit wackier by positing a wave-particle duality and noting that this would naturally quantize
electron orbits around a nucleus. Schrödinger and Heisenberg really got things going when they
wrote down their wave and matrix mechanics, respectively. Now that is some wacky stuff.

Figure 3.1: (Left) Max Planck, who suggested in 1900 that discretizing the energy of light into
packets called quanta could solve the ultraviolet catastrophe in the Rayleigh-Jeans law, and who also
wants you to get off his damn lawn. (Center) Erwin Schrödinger, who still holds the Guinness World
Record for Most Circular Glasses, and who expressed quantum mechanics in terms of wavefunctions.
(Right) Werner Heisenberg, who’s too cool for school, and who wrote down quantum mechanics in
terms of matrices, a formulation which turned out to be equivalent to Schrödinger’s.

In 3.1, we’ll review operator formalism, the Schrödinger equation, all that good stuff. In 3.2 we’ll
look at the quantum harmonic oscillator all its glory. In 3.3 we’ll reapply some of the same methods
to look at spin and angular momentum. In 3.4 we’ll give up on getting things exactly right and do
perturbation theory. In 3.5 we’ll perturb things in a time-dependent way, and in 3.6 we’ll bounce
things off each other.

107
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3.1 Review of Basics

We start from the Hamiltonian formulation of mechanics, in which the equations of motion are

dxi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂xi
. (3.1.1)

This leads to a nice way to write the time derivative of any quantity:

dA

dt
=
∂A

∂xi
∂H

∂pi
− ∂A

∂pi
∂H

∂xi
+
∂A

∂t
= {A,H}+ ∂A

∂t
, (3.1.2)

where we have defined the Poisson bracket

{A,B} =
∂A

∂xi
∂B

∂pi
− ∂A

∂pi
∂B

∂xi
. (3.1.3)

Note that {xi, pj} = δij .

The Poisson bracket gives a Lie algebra structure to classical quantities. We quantize a classical
theory by attempting to form a representation of this algebra A 7→ Â such that

[Â, B̂] = iℏ{A,B}. (3.1.4)

Note in particular the canonical commutation relations,

[x̂i, p̂j ] = iℏδij . (3.1.5)

Equations of motion for these operators in the Heisenberg representation are given by lifting the
equation above to read

iℏ
dÂ

dt
= [Â, Ĥ] + iℏ

∂Â

∂t
. (3.1.6)

We see that the operator Ĥ determines the time dependence of all other operators which are not
explicitly time dependent.

Let’s assume Â has no explicit time dependence. Then the matrix elements of this operator change
according to

iℏ
d

dt

(
⟨ψ|Â|ϕ⟩

)
= ⟨ψ|[Â, Ĥ]|ϕ⟩ = ⟨ψ|ÂĤ|ϕ⟩ − ⟨ψ|ĤÂ|ϕ⟩ . (3.1.7)

This would also be satisfied if we took Â to be constant and imposed a time dependence on the
states by

iℏ
d

dt
|ψ⟩ = Ĥ |ψ⟩ . (3.1.8)

This is Schrödinger’s equation. We can solve it by decomposing |ψ⟩ into eigenstates of Ĥ, for which
the equation is trivial to solve. Thus, the real meat of solving the equation comes in solving

Ĥ |ψ⟩ = E |ψ⟩ , (3.1.9)

sometimes called the time-independent Schrödinger equation.
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Problem 3.1 (M07Q1)
Let F (r,p) be some function of position and momentum without explicit time dependence,
∂F
∂t = 0.

a) If |ψn⟩ is an eigenstate of a Hamiltonian Ĥ in the Schrödinger representation, show that

d

dt
(⟨ψn |F |ψn⟩) = 0. (3.1.10)

b) Suppose

H =
p2

2m
+ V (r). (3.1.11)

Show that ⟨
ψn

∣∣∣∣ p2

2m

∣∣∣∣ψn⟩ =
1

2
⟨ψn | r · ∇V (r) |ψn⟩ . (3.1.12)

c) Use this quantum-mechanical version of the virial theorem to estimate the fraction of the
proton rest mass that is in the form of potential energy. The gluon-mediated force between
two quarks is nearly independent of the distance between them. The rest mass of the quarks
is much smaller than the mass of the proton, so strictly speaking one should use a relativistic
version of the virial theorem. However, the non-relativistic version still gives approximately
correct results, see “Relativistic virial theorem”, Phys. Rev. Lett. 64, 2733-2735 (1990).

We have
d

dt
(⟨ψn |F |ψn⟩) = − i

ℏ
⟨ψn | [F,H] |ψn⟩ , (3.1.13)

and since |ψn⟩ is an eigenstate of H, the expectation of this commutator vanishes.

Let
F (r,p) = r · p. (3.1.14)

Then
0 =

d

dt
(⟨ψn |F |ψn⟩) = ⟨ψn | (v · p− r · ∇V (r)) |ψn⟩ , (3.1.15)

from which the result follows.

If we have a force independent of distance, then V (r) ∼ |r|, and so the virial theorem in this
form gives ⟨

ψn

∣∣∣∣ p2

2m

∣∣∣∣ψn⟩ =
1

2
⟨ψn | r · r̂ |ψn⟩ =

1

2
⟨ψn |V (r) |ψn⟩ . (3.1.16)

Thus, 2
3 of the total energy (i.e., the rest mass) is in the form of potential energy.
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Problem 3.2 (J15Q3)a) Consider the Hamiltonian for a general time-independent, one-
dimensional potential V (x),

H = − ℏ2

2m

d2

dx2
+ V (x). (3.1.17)

Show that for an arbitrary, continuous function ϕ(x), the value of

E =
⟨ϕ|H|ϕ⟩
⟨ϕ|ϕ⟩

(3.1.18)

gives an upper bound on the ground state energy for the potential V (x).

b) For a particle moving in a triangular potential well

V (x) =

{
∞ if x < 0,

V0x/L if x > 0
(3.1.19)

the energy levels take the form

En = αnV0

(
ℏ2

mL2V0

)q
(3.1.20)

where αn and q are numerical constants. Determine the value of the exponent q.

c) Using the approach in part (a), find an estimate for the constant α0 corresponding to the
ground state in the triangular potential well. (The estimate needs not be optimal, but should
be based on a reasonable variational calculation.)

The variational principle has nothing to do with one dimension or spatial wavefunction. If we
decompose into energy eigenstates,

|ϕ⟩ =
∑

an |ψn⟩ , (3.1.21)

with E0 < E1 < . . ., then

E =

∑
En|an|2∑
|an|2

≥ E0. (3.1.22)

Since the parameters V0 and L appear only in the combination V0
L in the Hamiltonian, the energy

levels must be invariant under V0 7→ αV0, L 7→ αL. This gives q = 1
3 .

One possible choice of variational wavefunctions ϕ(x) is the family

ϕ(x; a) =

{
xe−αx if x > 0

0 if x < 0
, (3.1.23)

because it vanishes at 0, is normalizable, and leads to easy integrals. We have

⟨ϕ|H|ϕ⟩ =
ˆ ∞

0

[
ℏ2

2m

(
−2αxe−2αx + α2x2e−2αx

)
+
V0
L
x3e−2αx

]
dx. (3.1.24)
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Starting from ˆ ∞

0
e−αx dx =

1

α
, (3.1.25)

we can differentiate with respect to α and find
ˆ ∞

0
xne−αx =

n!

αn+1
, (3.1.26)

so
⟨ϕ|H|ϕ⟩ = − ℏ2

8mα
+

3V0
8α4L

. (3.1.27)

Similarly, ⟨ϕ|ϕ⟩ = 1
4α2 . Taking the derivative of E, we find a minimum value of

E =

(
3

2

)5/3

V0

(
ℏ2

mL2V0

)1/3

, (3.1.28)

so α0 ≤
(
3
2

)5/3.
The spectrum (set of eigenvalues) of the Hamiltonian contains essentially all the physics of a
system. In particular, we can restrict attention to the negative eigenvalues, which correspond to
bound states of the system. For example, the hydrogen atom, which we will come to later, has an
infinite set of bound states with energies arbitrarily close to zero from below.

One of the most important tools for solving a Hamiltonian is symmetry. If there is some operator
A which commutes with the Hamiltonian, [A,H] = 0, then

H(A |ψn⟩) = A(H |ψn⟩) = En(A |ψn⟩), (3.1.29)

so A respects the eigenspaces of H. This means we can choose a basis for the eigenstates of H such
that they are all also eigenstates of A.

Problem 3.3 (M15Q1)
A particle of mass m, is moving on a line under the action of the Hamiltonian:

HL =
p2

2m
− b2 (δ(x+ L) + δ(x− L)) (3.1.30)

(whose potential features a pair of attracting delta functions).

a) State the symmetry, and sketch the shapes of the ground state and of the first excited bound
state, in case such a state exists.

b) Determine the minimal L0 such that for L > L0 the Hamiltonian has more than one bound
state.

c) What is the maximal number of bound states that HL can have?
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Clearly there is a symmetry x → −x. This means all the energy eigenstates will be parity
eigenstates, i.e., either even or odd functions.

Everywhere except at ±L, the wavefunction has to be an eigenfunction of d
dx2

. The eigenfunctions
of this operator with eigenvalue k2 are of the form e±kx. Typically we take k imaginary to avoid
egregious non-normalizability issues, but in this instance we can keep k real by having only an
ekx contribution for x < −L and only e−kx for x > L. In the middle region we can have a
combination of the two. To sketch the ground state and first excited bound state we use the
parity symmetry. The two states are shown in Figure 3.2.

x

ψ+(x)

x

ψ−(x)

Figure 3.2: The ground state ψ+(x), with even parity, and the first excited bound state (if it
exists) ψ−(x), with odd parity.

Now for the details. The general form for these two wavefunctions is

ψ±(x) =


±Aek(x+L) x < −L

2A
ekL±1

(
±ek(x+L) + e−k(x−L)

)
−L < x < L

Ae−k(x−L) x > L

. (3.1.31)

By integrating Schrödinger’s equation in a small neighborhood around L or −L, we find

− ℏ2

2m
∆
dψ

dx
= b2ψ(±L), (3.1.32)

so
ℏ2Ak
2m

(
1− 1

ekL ± 1

)
= b2A, (3.1.33)

so k = 2b2m
ℏ2

(
1− 1

ekL±1

)−1
. When we take the positive sign this is always fine, but for the

negative sign, we need ekL > 2 in order to have a positive k. Thus, L0 =
ln 2
k .

It is clear from everything said so far that there can be only two bound states.

Problem 3.4 (J07Q2)
An electron is moving in one dimension in a potential V (x) = 0 for x > 0 and V (x) = V0 > 0 for
x < 0. The region x > 0 is empty space, where the electron mass is the usual bare mass m0, but
in the region x < 0 it has a modified “effective mass” m1. When the mass of a non-relativistic
particle depends on its position, the Hamiltonian should be written in the operator-ordered form

H =
1

2
p(m(x))−1p+ V (x) (3.1.34)
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where [x, p] = iℏ.

V (x)

x0

0

E < V0

V0

m = m1 m = m0

a) The standard continuity conditions (continuity of Ψ(x) and Ψ′(x) = dΨ/dx only apply at
x = 0 if m1 = m0. Derive the continuity conditions that apply at points where the mass is
discontinuous.

b) The (unnormalized) wave function of an eigenstate of the Hamiltonian with an energy E < V0
is given by Ψ(x) = A sin k(x− x0) for x > 0. Find k, x0 and Ψ(x) for x < 0. Make a sketch
of the function Ψ(x), indicating its essential features.

Integrating the Schrödinger equation in a neighborhood around x = 0 gives

∆

(
1

m(x)

dΨ

dx

)
= 0, (3.1.35)

so in this case Ψ(x) and 1
m
dΨ
dx are continuous.

The Schrödinger equation applied to Ψ(x) = A sin k(x − x0) immediately gives E = ℏ2k2
2m , so

k =
√
2mE
ℏ . For x < 0, we need Ψ(x) = Beκx with κ =

√
2m(V0−E)

ℏ . The boundary conditions
give

B = A sin(−kx0),
Bκ

m1
=
Ak

m0
cos kx0. (3.1.36)

Dividing these equations and solving for x0, we find

x0 = −1

k
cot−1 m0κ

m1k
. (3.1.37)

The full solution Ψ(x) is sketched in Figure 3.3.

x

Ψ(x)
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Figure 3.3: The solution Ψ(x), which has a kink at x = 0 because of the discontinuity in effective
mass.

A cute result which rarely comes up: in one dimension, the nth energy eigenstate has n− 1 nodes.
This is a consequence of fancy Sturm-Liouville business, but there’s a pretty short way to prove it.
Start with a potential V (x), and let Vϵ(x) be V (x) in (−ϵ, ϵ) and infinite elsewhere. For very small
ϵ, this looks like the particle-in-a-box, for which we can explicitly write down the eigenstates and
show that they obey the node law which we claim. If we then increase ϵ, the node law is preserved.
Indeed, for a state to develop a node, both ψ and its derivative would have to vanish somewhere,
and this would force ψ to vanish everywhere.

Problem 3.5 (M06Q1)
A particle of mass m moves in one dimension to the right of a wall at x = 0 in the potential

V (x) = −A
x

(3.1.38)

where A is a given positive parameter.

a) Find the ground state energy.

b) Find the position expectation value, ⟨x⟩, for the ground state.

We need a function which vanishes at x = 0, which has no nodes (so it can be the ground state),
and which is integrable over (0,∞). An obvious choice is ψ(x) ∝ xe−αx. Indeed, this gives

− ℏ2

2m

d2ψ

dx2
− A

x
ψ =

αℏ2/m−A

x
− ℏ2α2

2m
. (3.1.39)

Choosing α = Am
ℏ2 , we obtain a state with energy E0 = −A2m

2ℏ2 .

The expectation value of position in the ground state is

⟨x⟩ = ⟨ψ|x|ψ⟩
⟨ψ|ψ⟩

=
3

2α
=

3ℏ2

2Am
= − 3A

4E0
. (3.1.40)

3.2 Harmonic Oscillators

The Hamiltonian for a harmonic oscillator is

H =
p2

2m
+

1

2
mω2x2. (3.2.1)
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Figure 3.4

If we introduce the operators

a =

√
mω

2ℏ

(
x+

ip

mω

)
, a† =

√
mω

2ℏ

(
x− ip

mω

)
, (3.2.2)

then we find
H = ℏω

(
a†a+

i

2ℏ
[p, x]

)
= ℏω

(
a†a+

1

2

)
. (3.2.3)

These operators satisfy [a, a†] = 1, which implies [H, a†] = ℏωa† and [H, a] = −ℏωa. Let H |ψ⟩ =
E |ψ⟩; then we have

H(a |ψ⟩) = aH |ψ⟩ − ℏωa |ψ⟩ = (E − ℏω)a |ψ⟩ , (3.2.4)

so a |ψ⟩ is a state with energy E−ℏω. Similarly, a† |ψ⟩ has energy E+ℏω. Clearly the Hamiltonian
is positive definite, so the energy levels must be bounded from below, meaning we can’t keep acting
with a indefinitely; the only way for the energies to stop falling is to have a state |0⟩ for which

a |0⟩ = 0. (3.2.5)

This is the ground state of the Hamiltonian, and clearly it has energy 1
2ℏω. By acting with a†, we

can construct all other states,
|n⟩ ∝ (a†)n |0⟩ , (3.2.6)

and |n⟩ has energy ℏω
(
n+ 1

2

)
. To obtain the exact proportionality, we note that⟨
n
∣∣∣ aa† ∣∣∣n⟩ =

⟨
n
∣∣∣ (a†a+ 1

) ∣∣∣n⟩ = n+ 1, (3.2.7)

so
a† |n⟩ =

√
n+ 1 |n+ 1⟩ . (3.2.8)

This was really easy, so it’s pretty convenient that basically everything is a harmonic oscillator.

Problem 3.6 (M08Q2)
The dynamics of a system is characterized by the Hamiltonian

H = a†a+
1

2
, [a, a†] = 1. (3.2.9)



116 CHAPTER 3. QUANTUM MECHANICS

a) Show that the ground state of this system, |0⟩ satisfies

a |0⟩ = 0. (3.2.10)

b) Consider the state
|α⟩ = N eαa

†−α∗a |0⟩ (3.2.11)

where N is some normalization constant. Show that a |α⟩ = α |α⟩. Find N .

c) Consider the change of variables

a =
1√
2
(q + ip) , a† =

1√
2
(q − ip) . (3.2.12)

Derive and interpret the hamiltonian in this set of new variables.

d) Calculate ⟨α|q|α⟩. Describe the time dependence of ⟨α|q|α⟩.

Oops, we already showed that a |0⟩ = 0. It’s because the Hamiltonian has to have energy levels
bounded from below.

Using the commutation relations of a and a†, we have

a
(
αa† − α∗a

)n
= αn

(
αa† − α∗a

)n−1
+
(
αa† − α∗a

)n
a. (3.2.13)

The second term annihilates |0⟩, so we have

a |α⟩ = Na

( ∞∑
n=0

1

n!

(
αa† − α∗a

)n)
|0⟩ = Nα

( ∞∑
n=0

1

(n− 1)!

(
αa† − α∗a

)n−1
)
|0⟩ = α |α⟩ .

(3.2.14)

To determine N , we use the Baker-Campbell-Hausdorff formula to show that

eαa
†
e−α

∗a = eαa
†−α∗a+ 1

2
|α|2 . (3.2.15)

We then have

⟨α|α⟩ = N 2
⟨
0
∣∣∣ eα∗a−αa†

∣∣∣α⟩ = N 2e−|α|2/2 ⟨0|eαa†e−α∗a|0⟩ = N 2e|α|
2/2, (3.2.16)

so N = e|α|
2/4.

Using the given change of variables, we have

[a, a†] = i[p, q], (3.2.17)

so [q, p] = i. The Hamiltonian is then

H =
1

2
(p2 + q2) +

i

2
[p, q] +

1

2
=

1

2
(p2 + q2), (3.2.18)
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which describes a harmonic oscillator.

The expectation of position in the state |α⟩ is

⟨α|q|α⟩ =
⟨
α

∣∣∣∣ a+ a†

2

∣∣∣∣α⟩ = Reα. (3.2.19)

The time dependence is most easily computed using the Heisenberg picture. We have

d

dt
⟨α|q|α⟩ = 1

i
⟨α | [q,H] |α⟩ =

⟨
α

∣∣∣∣ a− a†

2

∣∣∣∣α⟩ = Imα, (3.2.20)

so it only remains to determine the behavior of α itself. We have

d

dt
⟨α|a|α⟩ = 1

i
⟨α | [a,H] |α⟩ = −iα, (3.2.21)

so α ∼ e−it, and hence ⟨α|q|α⟩ ∼ cos t.

Problem 3.7 (J06Q1)a) For a particle moving in three dimensions with Hamiltonian

H =
p2

2m
+ V (r) (3.2.22)

in an arbitrary quantum state, what are the time derivatives, d⟨r⟩/dt and d⟨p⟩/dt, of the
expectation values of the position and momentum?

b) For times t < 0, a one-dimensional simple harmonic oscillator with mass m and frequency ω
is in its ground state, at energy ℏω/2, with ⟨x⟩ = 0. At time t = 0 a uniform electric field E
is instantaneously turned on and remains on for t > 0; it couples to the particle’s charge q.
What is the full time- and x-dependence of the particle’s wave function ψ(x, t)? If its energy
is measured at time t, what are the possible results and their probabilities?

Working in the Heisenberg picture, we immediately find

d⟨r⟩
dt

=
⟨
ψ
∣∣∣ p
m

∣∣∣ψ⟩ , d⟨p⟩
dt

= −⟨ψ |∇V (r) |ψ⟩ . (3.2.23)

When the electric field turns on, the Hamiltonian becomes

H =
p2

2m
+

1

2
mω2x2 − qEx =

p2

2m
+

1

2
mω2

(
x− qE

mω2

)2

+ const, (3.2.24)

so the relevant position operator is now xE = x− qE
mω2 ≡ x− x0. The new ladder operators are

aE =

√
mω

2ℏ

(
xE +

ip

mω

)
= a− qE

ω
√
2ℏmω

, a†E = a† − qE

ω
√
2ℏmω

. (3.2.25)
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Before the electric field was turned on, the system was in the state |0⟩ with a |0⟩ = 0, so

aE |0⟩ = −
√
mω

2ℏ
x0 |0⟩ , (3.2.26)

Eigenstates of the lowering operator are coherent states (as described in the previous problem),
so the time-evolving state is given by ∣∣∣∣−√mω

2ℏ
x0e

−iωt
⟩
, (3.2.27)

where |α⟩ ∝ eαa
†
E−α∗aE |0E⟩. Now we need to write this in position space. We start by computing

αa†E − α∗aE = i

√
2mω

ℏ

(
(Imα)xE − (Reα)

p

mω

)
. (3.2.28)

From Baker-Campbell-Hausdorff we have
exEep = exE+p+iℏ/2, (3.2.29)

so

exp

(
i

√
2mω

ℏ

(
(Imα)xE − (Reα)

p

mω

))
(3.2.30)

= exp

(
i

√
2mω

ℏ
(Imα)xE

)
exp

(
−i
√

2

ℏmω
(Reα)p

)
exp

(
−iα

2 − (α∗)2

4

)
. (3.2.31)

Now we act on the ground state ⟨x|0E⟩ = ψ0(x − x0), where ψ0(x) = ⟨x|0⟩ is the well-known
ground state of the harmonic oscillator. The second factor above is a translation operator.
Substituting α = −

√
mω
2ℏ x0e

−iωt, the result is

ψ(x, t) ∝ exp
(
i
mω

ℏ
x0(x− x0) sinωt

)
exp

(
−mω

2ℏ
x20 sin(2ωt)

)
ψ0 (x− x0 + x0 cos(ωt)) ,

(3.2.32)
a wavefunction only a mother could love. We still need to normalize this, since we never nor-
malized the coherent state, but this is easy since we already know ψ0(x) is normalized. We can
just drop the second factor, and so we have

ψ(x, t) = exp
(
i
mω

ℏ
x0(x− x0) sinωt

)
ψ0 (x− x0 + x0 cos(ωt)) . (3.2.33)

Now its father loves it too.

Since coherent states are eigenvalues of the lowering operator, and a |n⟩ =
√
n |n− 1⟩, we must

have
|α⟩ = e−|α|2

∞∑
n=0

αn√
n!

|n⟩ . (3.2.34)

Thus, the probability of measuring energy En = ℏω
(
n+ 1

2

)
at time t > 0 is

Pn(t) =
|α|2ne−|α|2

n!
, (3.2.35)

the familiar Poisson distribution with ⟨n⟩ = |α|2 = mω
2ℏ x

2
0, or equivalently,

⟨E⟩ = 1

2
mω2x20. (3.2.36)

This is to be expected, since this is obviously the expected energy of the wavefunction at t = 0.
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Problem 3.8 (M02Q1)
Consider the driven harmonic oscillator:

H(t) =
1

2

(
p2 + x2

)
−
√
2f(t)x (3.2.37)

where f(t) is a c-number function of time. Note that we have set the natural frequency of the
oscillator, ω0, to 1. In the following you should also use ℏ = 1.

Defining the time evolution operator in the Schrödinger picture by,

|ψ(t)⟩S = U(t) |ψ(0)⟩ , (3.2.38)

we can transform to the Heisenberg picture

|ψ⟩H = U †(t) |ψ(t)⟩S ≡ |ψ(0)⟩ (3.2.39)

and
OH(t) = U †(t)OSU(t). (3.2.40)

Working in the Heisenberg picture,

a) Write down the equations of motion for the operators x and p.

b) Solve the operator equations of motion derived in a) for the case

f(t) =

{
f0 cosωt for 0 ≤ t ≤ T,

0 otherwise
. (3.2.41)

c) Compute the expectation value of the total energy gained by the oscillator at resonance,
ω = 1, if |ψ(0)⟩ = |0⟩, its unperturbed ground state. Sketch your result as a function of T .

The equations of motion for the operators are

dx

dt
= p,

dp

dt
= −x+

√
2f(t). (3.2.42)

To solve these equations for the given f(t), we take another derivative and use

d2p

dt2
+ p =

√
2ḟ(t). (3.2.43)

A Green’s function for this equation is p(t) = sin t, so

p(t) = −
√
2ω

ˆ t

0
sin (T − t) sin (ωt) dt. (3.2.44)

This then determines
x(t) =

ˆ t

0
p(t) dt. (3.2.45)
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One could evaluate these integrals in the general case, if one hated oneself.

For ω = 1 things simplify considerably. Using

sin(T − t) sin(t) =
1

2
(cos(T − 2t)− cosT ) , (3.2.46)

we find
p(t) =

1√
2

(
t cosT +

1

2
(sin(T )− sin(T − 2t))

)
. (3.2.47)

Another integral gives

x(t) =
1

4
√
2

(
(2t2 − 1) cosT − 2t sinT + cos(T − 2T )

)
. (3.2.48)

The expected energy gain is

⟨∆E⟩ = 1

2

(
x(T )2 + p(T )2

)
=

4 + T 2

16
(sinT − T cosT )2 . (3.2.49)

Harmonic oscillators are so easy because they have quadratic Hamiltonians. This implies in partic-
ular that when we look at a harmonic oscillator in more than one dimension, it can be viewed as a
sum of harmonic oscillators in each direction. The energy levels will be degenerate, since there are
many ways of forming a fixed sum from the d ladder levels.

Problem 3.9 (J15Q1)
Consider a toy model of the Helium atom where the Coulombic interaction potential is replaced
with a Hooke’s law potential. If the nucleus of the atom is located at r = 0 and the electrons of
mass m have position vectors r1 and r2, the interaction potential is

V (r1, r2) =
1

2
mω2

(
r21 + r22

)
− λ

4
mω2 (r1 − r2)

2 . (3.2.50)

This model is exactly solvable. Assume λ > 0.

a) What constraint must be imposed on λ for the system to be well-behaved?

b) What are the energy levels of this system when λ = 1/2?

c) Taking into account the spin of the electrons, what are the degeneracies of the lowest four
energy levels when λ = 1/2?

d) Suppose the Helium atom is initially in the third excited state. It then undergoes a decay
through an electric dipole transition to a lower-energy state. What are the possible energies
of the emitted photon?
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In terms of the center of mass u = 1
2 (r1 + r2) and the separation v = r1 − r2, the interaction

potential is
V = mω2u2 +

1− λ

4
mω2v2. (3.2.51)

Thus, in order for the potential to be positive definite, we need λ < 1.

The full Hamiltonian when λ = 1/2 is

H =
p2
u/2 + 2p2

v

2m
+ V =

(
p2
u

2(2m)
+

1

2
(2m)ω2u2

)
+

(
p2
v

2(m/2)
+

1

2

(m
2

)( ω√
2

)2

v2

)
. (3.2.52)

We have an oscillator with frequency ω describing the excitations in u, and an oscillator with
frequency 1√

2
ω describing the excitations in v. Both of these oscillators are in three dimensions,

so we have six quantum numbers to label the energy levels:

Ea1,a2,a3,b1,b2,b3 = ℏω
(
a1 + a2 + a3 +

3

2

)
+ ℏ

ω√
2

(
b1 + b2 + b3 +

3

2

)
. (3.2.53)

To find the degeneracy of the energy levels, we need to count the number of ways the sums
a1 + a2 + a3 and b1 + b2 + b3 can be arranged, and also count the spin degeneracy. The total
spin is set by the need to obey Fermi-Dirac statistics. Exactly one of the spatial and spin
wavefunctions should be antisymmetric. The antisymmetric spin state is the singlet, and the
symmetric states are in the triplet. The symmetry of the spatial wavefunction is given by the
parity of b1 + b2 + b3. So, we have the following degeneracies.

Level a1 + a2 + a3 b1 + b2 + b3 (E − E0)/ℏω Spin State Degeneracy
0 0 0 0 Singlet 1× 1
1 0 1 1√

2
Triplet 3× 3

2 1 0 1 Singlet 3× 1

3 0 2
√
2 Singlet 6× 1

Spoilers for perturbation theory: the dipole selection rule comes from determining whether the
matrix element ⟨ψf |O|ψi⟩ vanishes, where O is the dipole moment operator which transforms as
a vector, i.e., odd under inversions. Clearly ψi and ψf have to have different parities in order for
this matrix element to be nonzero. The only lower energy state with parity different from the
third excited state is the first excited state, so the photons will have energy ℏω√

2
.

Problem 3.10 (M15Q2)
A point particle of mass m and electric charge q moves in a 3d harmonic oscillator potential
with frequency ω and a uniform electric field of strength E pointing in the z-direction. The
Hamiltonian is

H =
p2

2m
+

1

2
mω2r2 − qE ẑ (3.2.54)

a) What are the eigenenergies of this Hamiltonian?
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b) Find an expression for the ground state wave-function.
Assume now that the system is described by the above Hamiltonian only for t < 0, and that
at t = 0 the electric field is suddenly turned off. For t < 0, the system is in its ground state.

c) What is the probability that the system will end up in the new ground state right after the
electric field is turned off?

d) What is the expectation value of the electric dipole moment d = qr at some given time t > 0?

This is almost identical to a problem we did before, so a bit less detail here. This Hamiltonian
describes a harmonic oscillator with frequency ω and equilibrium position z0ẑ, where z0 = qE

mω2 .
Its eigenenergies are En = ℏω

(
n+ 3

2

)
.

The ground state wavefunction is ψ0(r−z0z), where ψ0 is the ground state wavefunction for the
unperturbed harmonic oscillator.

Since the shifted ground state is an eigenstate of the unshifted lowering operator, it is a coherent
state of the unshifted Hamiltonian with α =

√
mω
2ℏ z0. The probability of ending up in the new

ground state is

P0 = e−|α|2/2 = exp

(
− q2E2

4mℏω3

)
. (3.2.55)

By axisymmetry, the expectation of the dipole moment will point along the z-axis for all times.
We know that ⟨z⟩ = Reα and that α(t) = α(0)e−iωt, so ⟨d⟩ = qz0 cos(ωt).

3.3 Spin and Angular Momentum

In Chapter 1, we used the conservation of angular momentum to simplify problems with rotational
symmetry. The same approach works in quantum mechanics, under a different guise.

In the Heisenberg picture, we showed that

iℏ
dA

dt
= [A,H] + iℏ

∂A

∂t
. (3.3.1)

Thus, if an operator has no explicit time dependence, then its conservation is equivalent to it
commuting with the Hamiltonian.

If the Hamiltonian is invariant under rotational symmetry, then we must have

H = R(θ, n̂)−1HR(θ, n̂), (3.3.2)

where R(θ, n̂) is a rotation operator. These operators live in the group SO(3), which is three-
dimensional. They can be expressed as exponentials of elements of the algebra so(3), via

R(θ, n̂) = exp

(
i

ℏ
θn̂ · J

)
= 1 +

i

ℏ
θn̂ · J +O(θ2). (3.3.3)
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Thus, at first order in θ, the relation above reduces to

[H,J ] = 0, (3.3.4)

meaning that the operators J are conserved.

We noted previously that if an operator commutes with the Hamiltonian, we can choose the energy
eigenstates such that they are also eigenstates of the conserved operator. Now we have three
operators which each commute with the Hamiltonian (Jx, Jy, and Jz). However, they do not
commute with each other; the so(3) algebra (accounting for the factor of ℏ we have inserted by
hand) is

[Ji, Jj ] = iℏϵijkJk. (3.3.5)

Thus, we can only choose the energy eigenstates to be eigenstates of one of the J operators. In
addition, it is straightforward to show that

[J2, Ji] = 0, (3.3.6)

and clearly the Hamiltonian commutes with J2 = J2
x + J2

y + J2
z . So in summary, we can choose

energy eigenstates which are also eigenstates of J2 and Jz.

We can construct the eigenstates of J2 and Jz using an approach similar to the ladder operators
of the harmonic oscillator. Note that

[Jz, Jx ± iJy] = ±ℏ(Jx ± iJy), (3.3.7)

so the operators J± ≡ Jx± iJy raise and lower the eigenvalue of Jz in units of ℏ. To determine the
exact relationship, let |j,m⟩ be a simultaneous eigenstate of J2 and Jz, with

J2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ , Jz |j,m⟩ = mℏ |j,m⟩ . (3.3.8)

We have not yet shown that j is a half-integer, so the first relation is just foreshadowing. We then
have

⟨j,m | J−J+ | j,m⟩ =
⟨
j,m

∣∣ (J2
x + J2

y + i[Jx, Jy]
) ∣∣ j,m⟩ (3.3.9)

=
⟨
j,m

∣∣ (J2 − J2
z − Jz

) ∣∣ j,m⟩ (3.3.10)
= ℏ2 (j(j + 1)−m(m+ 1)) |j,m⟩ . (3.3.11)

It follows that
J± |j,m⟩ = ℏ

√
j(j + 1)−m(m± 1) |j,m± 1⟩ . (3.3.12)

We should not be able to raise and lower the eigenvalue of Jz indefinitely, since J2
z < J2. This

means there must be a state |j,m+⟩ with J+ |j,m+⟩ = 0. This is called the highest-weight state in
mathematical literature, and from the above it satisfies either m+ = j or m+ = −j−1. The second
possibility would violate J2

z < J2, so m+ = j. Similarly, there must be a lowest-weight state |j,m−⟩
such that J− |j,m−⟩ = 0, and the relations above imply m− = −j. In order to avoid an infinite
descent starting from |j, j⟩, we must eventually reach |j,−j⟩, which implies j − (−j) = 2j ∈ Z.
Hence, j is a half-integer.

We now have all the information we need about states of fixed J2 and Jz. They are organized into
multiplets labeled by j ∈ 1

2Z, which contain 2j + 1 states |j, j⟩ through |j,−j⟩.
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Doggo has spin 1

Doggo always be spinning
Figure 3.5: Spin represents intrinsic angular momentum.

Everything said so far applies to the total angular momentum of a system. An additional fact,
which is hard to motivate well without looking at its relativistic origin, is that particles can carry
internal angular momentum in the form of spin. The total angular momentum then splits as

J = L+ S, (3.3.13)

where L is orbital angular momentum and S is the spin piece.

Spin represents intrinsic magnetic moment in a particle, so it couples to magnetic fields. In the
spin-1/2 case, this coupling is represented by

H = µBB · σ (3.3.14)

where
σ =

{(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

)}
(3.3.15)

are the Pauli matrices which form a representation of the so(3) algebra:

[σi, σj ] = 2ϵijkσk, (3.3.16)

and µB = eℏ
2mc is the Bohr magneton (or a similar quantity if the particle is not an electron).

Problem 3.11 (M08Q3)
A spin of s = 1

2 has its z-component “up” at time t = 0. The dynamics of the spin are given by
the Hamiltonian

H = λℏσx, (3.3.17)

where σx is the usual Pauli matrix for a spin-1/2.

a) If the z-component of this spin is measured at time t = τ , what are the probabilities of each
possible result of this measurement?
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b) Now consider a slightly different question: the spin again starts “up” at time t = 0, but now
its z-component is measured twice, once at time t = τ/2 and then again at time t = τ . The
above Hamiltonian gives the spin’s dynamics between the measurements, and you can assume
the measurements happen instantaneously. However, the result of the first measurement at
time t = τ/2 is not known to you. Now what are the probabilities of each possible result of
the second measurement at time t = τ?

We are only considering the spin degree of freedom for this system, and so the state space is
2s+ 1 = 2-dimensional. We can express the state as

|ψ(t)⟩ = α(t) |+⟩+ β(t) |−⟩ , (3.3.18)

where |±⟩ =
∣∣1
2 ,± |1⟩ 2

⟩
and α(0) = 1, β(0) = 0. The Schrödinger equation then reads(

α̇(t)

β̇(t)

)
= −iλ

(
β(t)
α(t)

)
. (3.3.19)

Taking another time derivative gives α̈(t) = −λ2α(t) and likewise for β(t), so we solve and find

|ψ(t)⟩ = cos(λt) |+⟩+ sin(λt) |−⟩ . (3.3.20)

Thus, the probability of measuring Jz = ℏ
2 at time τ is cos2(λτ), and the probability of measuring

−ℏ
2 is sin2(λτ).

If we make the intermediate measurement at time τ/2, then a simple analysis of the two possi-
bilities shows that the probabilities become

Pℏ/2 = cos4
(
λ
τ

2

)
+ sin4

(
λ
τ

2

)
, (3.3.21)

P−ℏ/2 = 2 sin2
(
λ
τ

2

)
cos2

(
λ
τ

2

)
. (3.3.22)

Note that for small τ , the probability of measuring a spin-flip is unchanged by the intermediate
measurement.

Problem 3.12 (M13Q1)
The hyperfine structure of the n = 1 level of the hydrogen atom arises from a coupling between
the electron spin Se and the proton spin Sp with Hamiltonian

H = ASe · Sp, (3.3.23)
where A is a positive constant. Use the convention where the spin operators are dimensionless.
The kinetic energy and Coulomb interaction do not lift the spin degeneracies and may be ignored
in this problem.

a) What are the energies and degeneracies of the hyperfine levels in the absence of a magnetic
field? A uniform magnetic field B is turned on for a period of time. Assume that the field is
constant for 0 < t < T and zero for all other times.
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b) To a good approximation you can ignore the coupling of the proton spin to the magnetic
field, compared to that of the electron spin. Briefly explain why this is true.

c) Assume the atom was in the hyperfine state with total spin zero for t < 0. What is the
probability that it remains in this state for t > T?

The spin coupling can be written as

H =
A

2

(
(Se + Sp)

2 − S2
e − S2

p

)
. (3.3.24)

This is useful, since S2
e = S2

p = 3
4ℏ

2. It only remains to determine (Se + Sp)
2. Certainly if

both the electron and proton spin are aligned upwards then the total spin is 1. Acting with the
lowering operator J− = J−⊗ 1+1⊗J−, we find a spin-1 triplet of states with (Se + Sp)

2 = 2ℏ2.
The remaining state is a spin-0 singlet with (Se + Sp)

2 = 0. Thus, the energies are A
4 ℏ

2 with
degeneracy 3 and −3A

4 ℏ2 with degeneracy 1.

The coupling of spin to a magnetic field occurs through the magnetic dipole moment. The
magnetic dipole moment of a charged body is proportional to its angular momentum, but the
constant scaling between them will be inversely proportional to the mass of the body. Since
the proton is about 2000 times heavier than the electron, its coupling to the magnetic field is
negligible in comparison to that of the electron.

We are given that the atom is in the single spin-zero state for t < 0. By explicitly working out
the spin-1 triplet above, we find that the unique state orthogonal to it is

|ψ(t < 0)⟩ = 1√
2
(|+−⟩ − |−+⟩) , (3.3.25)

where the first spin is the electron. Without loss of generality assume the applied B field is in
the z-direction. Then both states |+−⟩ and |−+⟩ are eigenstates of the µBB · σ part of the
Hamiltonian, so the state for t > 0 will be a combination of the spin-zero state and the spin-one
state with Jz = 0. That is,

|ψ(0 < t < T )⟩ = α(t)√
2

(|+−⟩ − |−+⟩) + β(t)√
2
(|+−⟩+ |−+⟩) . (3.3.26)

The Schrödinger equation gives(
α̇(t)

β̇(t)

)
= − i

4ℏ

(
Aℏ 2µBB

2µBB −3Aℏ

)(
α(t)
β(t)

)
. (3.3.27)

The eigenvalues and eigenvectors of the matrix are

λ± =
i

4

(
−A± 2

ℏ

√
µ2BB

2 +A2ℏ2
)
, v± =

(
Aℏ
µBB

± 1
µBB

√
µ2BB

2 +A2ℏ2

1

)
. (3.3.28)

The initial state is µBB

2
√
µ2BB

2+A2ℏ2
(v+ − v−), so at time T we have

α(T ) = exp

(
− iTA

4

)cos
T
√
µ2BB

2 +A2ℏ2

2µBB
+

iAℏ√
µ2BB

2 +A2ℏ2
sin

T
√
µ2BB

2 +A2ℏ2

2µBB

 .

(3.3.29)
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Or something like that, it’s a lot of constants to keep track of. The probability of finding the
system in the spin-zero state is |α(T )|2. We can ignore the overall phase factor in α(T ), and the
cross terms cancel, and we can rearrange trig functions, so we have

|α(T )|2 = 1− 1

1 + A2ℏ2
µ2BB

2

sin2

(
T

2

√
1 +

A2ℏ2
µ2BB

2

)
(3.3.30)

which actually looks reasonable.

The previous problem illustrates addition of angular momentum. If we have two particles with
spin j1 and j2, then we can express the eigenstates of total angular momentum |J,M⟩ in terms
of the tensor products |j1,m1⟩ ⊗ |j2,m2⟩ of the single-particle angular momentum states. This
representation is typically written in terms of Clebsch-Gordon coefficients ⟨j1,m1, j2,m2|J,M⟩ as

|J,M⟩ =
∑

m1+m2=M

⟨j1,m1, j2,m2|J,M⟩ |j1,m1⟩ ⊗ |j2,m2⟩ . (3.3.31)

These Clebsch-Gordon coefficients, or “clebsches,” can be computed using the highest weight
method. First we start from |j1, j1⟩⊗|j2, j2⟩ and use the lowering operator to construct 2(j1+j2)+1
states (keeping track of normalization to get the clebsches). Included in this multiplet is one state
with Jz = j1 + j2 − 1, but there are two total such states, so we take the other one and build a
new multiplet, this one with 2(j1 + j2 − 1) + 1 states. We continue this process all the way until
we start from the lowest-highest-weight, Jz = |j1 − j2|, and build its multiplet.

In summary, if we add two particles with spins j1 and j2, the total system can have spin j1 + j2,
j1 + j2 − 1, . . . , |j1 − j2|. As a statement in representation theory, this is written

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ · · · ⊕ |j1 − j2|, (3.3.32)

where the representation of dimension 2j + 1 is labeled by j.

Problem 3.13 (M13Q3)
Four spin-S spins are located at the corners of a square and interact antiferromagnetically (J >
0). Use the convention where the spin operators are dimensionless. The Hamiltonian is

H = J (S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1) . (3.3.33)

a) What are a complete set of good quantum numbers that can be used to fully classify all of
the eigenstates of H?

b) For spin-1/2 give the eigenenergy and the degeneracy of each energy level.

c) For general spin S, what are the energy, degeneracy, and quantum numbers of the ground
state?
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We start by rewriting two of the dot products in terms of squared spin operators:

H =
J

2

(
(S1 + S2)

2 + (S3 + S4)
2 + 2S2 · S3 + 2S4 · S1 − 4ℏ2S(S + 1)

)
, (3.3.34)

where the last term comes from −S2
1 − · · · − S2

4 . We can then rewrite this as

H =
J

2

(
(S1 + S2 + S3 + S4)

2 − 2S1 · S3 − 2S2 · S4 − 4ℏ2S(S + 1)
)
. (3.3.35)

Finally, we rewrite the remaining dot products and find

H =
J

2

(
(S1 + S2 + S3 + S4)

2 − (S1 + S3)
2 − (S2 + S4)

2
)
. (3.3.36)

Thus, the quantum numbers we need are S2
tot, S2

13, and S2
24, where these variables have the

obvious meanings. The values of Stot are given by the sum rule applied to the values of S13 and
S24.

If S = 1/2, then we have the following states:

S13 S24 Stot H Degeneracy
0 0 0 0 1
1 0 1 0 3
0 1 1 0 3
1 1 0 −2Jℏ2 1
1 1 1 −Jℏ2 3
1 1 2 Jℏ2 5

Looking only at the energy column, we see there is one state with H = −2Jℏ2, three states with
H = −Jℏ2, seven states with H = 0, and five states with H = Jℏ2.

The ground state will always be the one with S13 = S24 = 2S and Stot = 0. This gives

E0 = −2Jℏ2S(2S + 1). (3.3.37)

It is a singlet state since Stot = 0.

Apparently some people actually do experiments with this stuff, and in experiments it’s a bit easier
to measure an angle than it is to measure an angular momentum eigenstate. So, let’s look at all
this from a more concrete bent. A rotationally invariant Hamiltonian looks like

H =
p2

2m
+ V (r) = − ℏ2

2m
∇2 + V (r). (3.3.38)

Writing ∇2 in spherical coordinates, the Schrödinger equation becomes(
1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂2ϕ
+

2m(E − V (r))

ℏ2

)
ψ(r, θ, ϕ) = 0. (3.3.39)

That’s a little gross, but separation of variables helps a lot. Let ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). First
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we find that 1
Φ
d2Φ
dϕ2

= const, and single-valuedness requires Φ(ϕ) = eimϕ with m ∈ Z. Next we find

sin θ
d

dθ

(
sin θ

d

dθ
Θ

)
=
(
const × sin2 θ −m2

)
Θ(θ). (3.3.40)

The solutions to this differential equation are the associated Legendre polynomials evaluated at
cos θ: Θ(θ) = Pmℓ (cos θ). The solutions are well-defined and nonzero only for ℓ an integer, with the
constant in the above equation becoming ℓ(ℓ+ 1), and −ℓ ≤ m ≤ ℓ. Unsurprisingly, these are the
same conditions that apply to the states |ℓ,m⟩. The complete angular part of the solution is called
a spherical harmonic:

Yℓ,m(θ, ϕ) = Nℓ,me
imϕPmℓ (cos θ), (3.3.41)

where the normalization Nℓ,m is chosen to make these functions orthonormal on the unit sphere.

The final equation is the radial equation,
d

dr

(
r2
dR

dr

)
+

(
2m(E − V (r))r2

ℏ2
− ℓ(ℓ+ 1)

)
R = 0. (3.3.42)

If we let R(r) = u(r)
r , this becomes

− ℏ2

2m

d2u

dr2
+

(
V (r) +

ℏ2ℓ(ℓ+ 1)

2mr2

)
u = Eu. (3.3.43)

This is the Schrödinger equation for a particle in one dimension with effective potential

Veff(r) = V (r) +
ℏ2ℓ(ℓ+ 1)

2mr2
, (3.3.44)

in exact analogy to the L2

2mr2
added to the potential in classical mechanics. Solving this equation

completes the solution of a spherical quantum system.

Problem 3.14 (J02Q1)
A particle of mass m moves in the spherically symmetrical potential in 3 dimensions:

V (r) =


0, 0 ≤ r < a

−U0, a < r < b

0, b < r

(3.3.45)

where U0 > 0.

What is the condition on U0 so that there will not be any bound states?

We can immediately write down the radial wave equation,

− ℏ2

2m

d2u

dr2
+

(
V (r) +

ℏ2ℓ(ℓ+ 1)

2mr2

)
u(r) = Eu(r). (3.3.46)

Since we are looking for the lowest-energy states, we can take ℓ = 0, so we have

d2u

dr2
= −2m(E + U0)

ℏ2
u (a ≤ r ≤ b),

d2u

dr2
= −2mE

ℏ2
u (r < a or r > b). (3.3.47)
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We want E < 0, so let κ =
√
−2mE

ℏ2 . Then we have u = Ae−κr for r > b and u = B sinh(κr) for
r < a (since u→ 0 as r → 0,∞). In the intermediate region we have

u(a ≤ r ≤ b) = C cos(λ(r − a)) +D sin(λ(r − a)), (3.3.48)

where λ =
√

2m(U0−E)
ℏ2 . The boundary conditions require

A sinh(κa)− C = 0, (3.3.49)
Aκ cosh(κa)− λD = 0, (3.3.50)

−BeκB + C cos(λ(b− a)) +D sin(λ(b− a)) = 0, (3.3.51)
κBe−κb − λC sin(λ(b− a)) + λD cos(λ(b− a)) = 0. (3.3.52)

In order for this system to have a nontrivial solution, we must have

det


sinh(κa) 0 −1 0
κ cosh(κa) 0 0 −λ

0 −eκb cos(λ(b− a)) sin(λ(b− a))
0 κe−κb −λ sin(λ(b− a)) λ cos(λ(b− a))

 = 0. (3.3.53)

For any fixed U0, the left hand side is a function of E. Presumably for some small enough U0,
this function has no roots less than zero, and as we increase U0, eventually it develops a negative
root. Let’s assume the roots are continuous in U0. Near the threshold U0, the negative root
should be very small, meaning κ is very small and λ ≈

√
2mU0
ℏ2 . The equation reduces to

0 = det


κa 0 −1 0
κ 0 0 −λ
0 −1 cos(λ(b− a)) sin(λ(b− a))
0 0 −λ sin(λ(b− a)) λ cos(λ(b− a))

 (3.3.54)

= κadet

 0 0 −λ
−1 cos(λ(b− a)) sin(λ(b− a))
0 −λ sin(λ(b− a)) λ cos(λ(b− a))

− κdet

 0 −1 0
−1 cos(λ(b− a)) sin(λ(b− a))
0 −λ sin(λ(b− a)) λ cos(λ(b− a))


(3.3.55)

= κadet

(
0 −λ

−λ sin(λ(b− a)) λ cos(λ(b− a))

)
− κdet

(
−1 0

−λ sin(λ(b− a)) λ cos(λ(b− a))

)
(3.3.56)

= −κλ2a sin(λ(b− a)) + κλ cos(λ(b− a)). (3.3.57)

where we have expanded by minors in each step. We find that the threshold U0 corresponds to
the first solution of λa = cot(λ(b − a)). Letting λ0 denote this first solution, the condition for
no bound states is

U0 <
ℏ2λ20
2m

. (3.3.58)

Going back to the spherical harmonics, we haven’t yet seen what they look like. We were able
to construct the |ℓ,m⟩ states using the raising and lowering operators, so we can translate this
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method into the coordinate basis to construct the Yℓ,m(θ, ϕ). Using the orbital angular momentum
L = −iℏr ×∇, we find

Lz = −iℏ ∂

∂ϕ
, L± = ℏe±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
. (3.3.59)

The highest-weight state is represented by Yℓ,ℓ(θ, ϕ). It must be an eigenfunction of Lz with
eigenvalue ℓℏ, so it has an overall factor of eiℓϕ. Additionally, it must be annihilated by L+, which
fixes Yℓ,ℓ(θ, ϕ) ∝ eiℓϕ sinℓ ϕ. The other states can be generated with L−.

Problem 3.15 (J03Q3)
An unpolarized nucleus of spin S = 2 decays into a nucleus of spin 0, plus two alpha particles,
both having spin 0 and orbital angular momentum L = 1. We would like to predict the probabil-
ity distribution of the angle between the directions of motion of the outgoing alphas. (Assuming
the original nucleus is unpolarized, there are no other meaningful angles in the problem.)

a) As a first step, use the techniques of angular momentum addition to construct states of total
angular momentum 2 out of two particles of orbital angular momentum 1. Put otherwise,
find the normalized linear combinations of Y1,m1(θ1, ϕ1)Y1,m2(θ2, ϕ2) that provide a basis of
the total angular momentum 2 representation.

b) Next, compute the probability density p(θ1, ϕ1; θ2, ϕ2) for the joint angular distribution of
both alphas when both θ1 = θ2 = π/2, so both alphas lie in the plane perpendicular to the
Sz-quantization axis. Recall that the original S = 2 nucleus is unpolarized (i.e. has equal
probability of being in the 5 different Sz substates).

c) The density obtained in the preceding part only depends on the angle ω = ϕ1 − ϕ2 between
the two particles. Use the fact that even for general θ1,2 and ϕ1,2, the density p will only
depend on the angle ω between the directions of the two alphas to compute the probability
distribution of ω.

We will label states by |m1,m2⟩. We know that the highest-weight state is |1, 1⟩, and acting
repeatedly with the lowering operator gives the following five states:

Sz = 2 : |1, 1⟩ (3.3.60)

Sz = 1 :
1√
2
(|1, 0⟩+ |0, 1⟩) (3.3.61)

Sz = 0 :
1√
6
(|1,−1⟩+ 2 |0, 0⟩+ |−1, 1⟩) (3.3.62)

Sz = −1 :
1√
2
(|0,−1⟩+ |−1, 0⟩) (3.3.63)

Sz = −2 : |−1,−1⟩ . (3.3.64)



132 CHAPTER 3. QUANTUM MECHANICS

For part (b), we need the spherical harmonics at ℓ = 1. Using the method outlined above, we
can compute

Y1,1(θ, ϕ) =

√
3

8π
eiϕ sin θ, (3.3.65)

Y1,0(θ, ϕ) = −
√

3

4π
cos θ, (3.3.66)

Y1,−1(θ, ϕ) = −
√

3

8π
e−iϕ sin θ. (3.3.67)

At θ = π/2, these functions are
√

3
8πe

iϕ, 0,−
√

3
8πe

−iϕ. We are given that the S = 2 nucleus has
equal probability of being in any of the five Sz states above, and we take this probability to be
statistical (rather than a quantum superposition, in which case we would need more information
to define the state), so we have

p
(π
2
, ϕ1;

π

2
, ϕ2

)
=

3

40π

(∣∣∣ei(ϕ1+ϕ2)∣∣∣2 + ∣∣∣∣ 1√
6

(
ei(ϕ1−ϕ2) + ei(ϕ2−ϕ1)

)∣∣∣∣2 + ∣∣∣e−i(ϕ1+ϕ2)∣∣∣2
)

(3.3.68)

=
1

20π

(
3 + cos2(ϕ1 − ϕ2)

)
. (3.3.69)

Normalizing this gives
p(ω) =

2

7π

(
3 + cos2 ω

)
. (3.3.70)

3.4 Perturbation Theory

So we can solve harmonic oscillators and some simple spherically symmetric systems. This is good,
because everything is a harmonic oscillator, but also not so good, because the previous claim is a
lie. In general, solving a Hamiltonian is hard – this is why a lot of physicists have jobs. However,
if a Hamiltonian is “close” in some sense to a Hamiltonian with known energies and eigenstates,
then we can develop the energies and states of the full Hamiltonian in a perturbative expansion.

To see how this works, let H0 be a Hamiltonian with known spectrum |n(0)⟩, with energies
H0 |n(0)⟩ = E

(0)
n |n(0)⟩. Let the full Hamiltonian be

H = H0 + λV, (3.4.1)

where V is some perturbing potential and λ is a parameter we can take arbitrarily small so that
an expansion makes sense. We can express the (as of yet unknown) spectrum of H as

|n⟩ = |n(0)⟩+ λ |n(1)⟩+ λ2 |n(2)⟩+ . . . , (3.4.2)
En = E(0)

n + λE(1)
n + λ2E(2)

n + . . . . (3.4.3)
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Now we write the Schrödinger equation. We have

H |n⟩ = E(0)
n |n(0)⟩+ λ

(
V |n(0)⟩+H0 |n(1)⟩

)
+ . . . (3.4.4)

En |n⟩ = E(0)
n |n(0)⟩+ λ

(
E(1)
n |n(0)⟩+ E(0)

n |n(1)⟩
)
+ . . . . (3.4.5)

The last equation implies ⟨n(0)|n(1)⟩ is pure imaginary. Equating the λ terms in the first two
equations and acting with ⟨n(0)|, we find

E(1)
n = ⟨n(0)|V |n(0)⟩ . (3.4.6)

To find the first-order correction to the state, we use

V |n(0)⟩ =
∑
k

|k(0)⟩ ⟨k(0)|V |n(0)⟩ =
∑
k ̸=n

|k(0)⟩ ⟨k(0)|V |n(0)⟩+ E(1) |n(0)⟩ . (3.4.7)

We then have, at order λ,

H0 |n(1)⟩+
∑
k ̸=n

|k(0)⟩ ⟨k(0)|V |n(0)⟩ = E(0)
n |n(1)⟩ . (3.4.8)

If we expand |n(1)⟩ =
∑
αk |k(0)⟩, and assume that |n(0)⟩ is the only state with energy E(0)

n (more
on the degenerate case later), this equation fixes the αk coefficients and we have

|n(1)⟩ =
∑
k ̸=n

⟨k(0)|V |n(0)⟩
E

(0)
n − E

(0)
k

|k(0)⟩ . (3.4.9)

Problem 3.16 (M10Q2)
A non-relativistic particle with mass m moves one-dimensionally in the potential

V (x) =
1

2
mω2x2 + λx4, with λ > 0. (3.4.10)

Let |Ψ0(λ)⟩ be the ground state of the system, and E0(λ) be the ground state energy. For small
λ, the quartic term in the potential can be treated as a small perturbation of the λ = 0 harmonic
oscillator problem, which has an oscillation frequency ω.

a) The particle coordinate x can be expressed as an operator in terms of a† and a, the raising
and lowering operators for the λ = 0 harmonic oscillator problem, where a |Ψ0(λ = 0)⟩ = 0.
Give such an expression for x.

b) Compute the perturbation expansion of the ground-state energy E0(λ) up to first order in λ.

c) Again up to first order in λ, compute the perturbation expansion of the ground-state expec-
tation value ⟨Ψ0(λ)|x2|Ψ0(λ)⟩.
In the opposite limit of large positive λ→ ∞, the leading behavior of the ground state energy
E0(λ) will be proportional to λα where α is a positive exponent.

d) (Up to an undetermined numerical multiplicative factor) find the asymptotic large-λ behavior
of the ground-state energy E0(λ), giving the explicit value of α.
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We have the usual expression for x,

x =

√
ℏ

2mω

(
a+ a†

)
. (3.4.11)

The first order correction to the ground state energy is

E
(1)
0 =

(
ℏ

2mω

)2⟨
0

∣∣∣∣ (a+ a†
)4 ∣∣∣∣ 0⟩ = 3

(
ℏ

2mω

)2

, (3.4.12)

and so we have
E0(λ) =

ℏω
2

+ 3λ

(
ℏ

2mω

)2

+O
(
λ2
)
. (3.4.13)

The first-order correction to the ground state is

|Ψ(1)
0 ⟩ =

(
ℏ

2mω

)2∑
k ̸=0

⟨
k
∣∣∣ (a+ a†

)4 ∣∣∣ 0⟩
−kℏω

|k⟩ (3.4.14)

=

(
ℏ

2mω

)2
(
−3

√
2

ℏω
|2⟩ −

√
6

2ℏω
|4⟩

)
. (3.4.15)

It follows that
⟨Ψ0(λ)|x2|Ψ0(λ)⟩ =

ℏ
2mω

− 3λ
ℏ2

2m3ω4
. (3.4.16)

For λ very large, we can ignore the harmonic oscillator potential, so we have

H = − ℏ2

2m

d2

dx2
+ λx4. (3.4.17)

The only way to form an energy out of these parameters is
(
ℏ4λ
m3

)1/3
, so α = 1/3.

Problem 3.17 (J98Q1)
A spin 1

2 particle of mass m moves in a spherical harmonic oscillator potential and is also subject
to a parity violating perturbation. The Hamiltonian is H = H0 +H1 with

H0 =
p2

2m
+

1

2
mω2r2, and H1 = λσ · r (3.4.18)

where σx, σy and σz are the Pauli spin matrices.

As a measure of the parity violation, compute the expectation value ⟨zσz⟩ for the ground state,
to first order in λ.
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We need to compute ⟨0|zσz|0⟩. We might be concerned, since the ground state |0⟩ actually
has two-fold spin degeneracy. However, this degeneracy is not broken at first order in λ, so we
actually don’t have to worry about this.

Anyway, the first order contribution is

2λRe
(
⟨0(0)|zσz|0(1)⟩

)
. (3.4.19)

Substituting the first order correction to the state, we have

2λ
∑
n̸=0

| ⟨0|zσz|n⟩ |2

E0 − En
= −2λσ2zx

2
0

ℏω
x20 = − λ

mω2
I, (3.4.20)

where I denotes the 2× 2 identity matrix.

The second order correction to the energy can be found using the same approach. At order λ2, the
Schrödinger equation gives

E(2)
n |n(2)⟩+ E(1)

n |n(1)⟩+ E(2)
n |n(0)⟩ = V |n(1)⟩+H0 |n(2)⟩ . (3.4.21)

Acting on the left with ⟨n(0)|, this becomes

E(2)
n =

∑
k ̸=n

| ⟨k(0)|V |n(0)⟩ |2

E
(0)
n − E

(0))
k

. (3.4.22)

I would be remiss if I didn’t mention a diagrammatic representation for the perturbation to the
energy. To get the correction at order λk, draw a circle and draw k− 1 arrows in the circle. There
are other rules, but at k = 1, 2 they don’t matter. To evaluate the diagrams, think of each arc as
a matrix element where sources of arrows are |n⟩ and targets are |m⟩ with m ̸= n, and each arrow
as an inverse energy difference:

E(1)
n = = ⟨n|V |n⟩ , E(2)

n = =
∑
m̸=n

⟨n|V |m⟩ ⟨m|V |n⟩
En − Em

. (3.4.23)

There seems to be a representation like this at all orders, but that’s outside the scope of this...whatever
this document is.

Problem 3.18 (J10Q1)
Consider an isotropic three-dimensional harmonic oscillator described by the rotationally-
invariant Hamiltonian

H =
p2

2m
+
mω2

2
x2. (3.4.24)

a) i. What are the energies and degeneracies of the lowest three energy levels?
ii. Account for the degeneracies by classifying states in these levels into total angular mo-

mentum multiplets.
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b) By how much does the ground state energy change under the influence of a perturbation of
the form

H ′ = λ(b · x)3 (3.4.25)
where b is some fixed vector, and λ is small? Calculate the correction up to second order in
λ.
Now suppose that the oscillating particle has charge q. At time t = 0, a weak uniform electric
field E is switched on, which then slowly decays as E(t) = E0e

−t/τ , with τ > 0.

c) What is the probability (to leading order in |E0|) that a system originally in the ground state
will be in an excited state at a much larger time t≫ τ?

We can write the harmonic oscillator Hamiltonian as a sum of three number operators, and so
the energy levels are

En1,n2,n3 = ℏω
(
n1 + n2 + n3 +

3

2

)
. (3.4.26)

Clearly there is one ground state with E0 =
3
2ℏω, three degenerate excited states with E1 =

5
2ℏω,

and six degenerate doubly excited states with E2 =
7
2ℏω.

In terms of angular momentum multiplets, the first level is the singlet, the second level is the
spin-1 triplet, and the third level comes from summing two spin-1 excitations: the two spins can
be parallel (giving spin 2, with 5 levels) or antiparallel (giving an additional singlet).

The cubic perturbation doesn’t couple the ground state to itself (as can be shown explicitly, or
by parity considerations), so the leading correction to the ground state energy is second order.
The ground state will be coupled to the states with total excitation 1 or 3. The matrix elements
for representative states are

⟨1, 1, 1|H ′|0, 0, 0⟩ = (λx30)6bxbybz, (3.4.27)
⟨2, 1, 0|H ′|0, 0, 0⟩ = (λx30)3

√
2b2xby, (3.4.28)

⟨3, 0, 0|H ′|0, 0, 0⟩ = (λx30)
√
6b3x, (3.4.29)

⟨1, 0, 0|H ′|0, 0, 0⟩ = (λx30)(3b
3
x + 3bxb

2
y + 3bxb

2
z), (3.4.30)

where x0 =
√

ℏ
2mω , as can be shown by simple computations with the raising and lowering

operators. We thus have

E
(2)
0 = −λ2x60

(
36b2xb

2
yb

2
z + (18b4xb

2
y + . . .) + (6b6x + . . .)

3ℏω
+

(2b3x + 3bxb
2
y + 3bxb

2
z)

2 + . . .

ℏω

)
.

(3.4.31)
The dots refer to terms coming from the other states, e.g. |0, 1, 0⟩. Collecting terms, we find

E0 =
3

2
ℏω − 11λ2x60

ℏω
|b|6 +O(λ3), (3.4.32)

a miracle which was guaranteed from the outset by spherical symmetry (i.e., we can get the 11
from comparing the b6x term, and the rest follows).
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For part (c), we need time-dependent perturbation theory, so, spoilers. The perturbing Hamil-
tonian is

V = −e−t/τE0 · x. (3.4.33)

This only couples the ground state to |1, 0, 0⟩ and similar, and the matrix element is

⟨1, 0, 0|V |0, 0, 0⟩ = −e−t/τE0,xx0. (3.4.34)

Thus, we have
c
(1)
1,0,0(∞) =

i

ℏ
E0,xx0

ˆ ∞

0
e−iωte−t/τ dt =

iE0,xx0
ℏ(τ−1 + iω)

, (3.4.35)

so the leading-order probability of finishing in one of the three excited states is

P = |c(1)1,0,0(∞)|2 + . . . =
|E0|2x20τ2

ℏ2(1 + ω2τ2)
. (3.4.36)

Problem 3.19 (J05Q2)
A particle of charge e is free to move on a circular ring of radius R centered around a fixed
particle of charge +e. The ring is in the xy plane. A uniform electric field E is applied in the
x-direction.

a) Compute the ground state energy to leading order in small E.

b) Develop an approximation for the ground state energy in the limit of large E.

The wavefunction for the nth unperturbed state is ψn(θ) ∼ einθ, which gives unperturbed energies
En = ℏ2n2

2mR2 − q2

R . The perturbing Hamiltonian can be written as eER cos θ, which has matrix
elements

⟨n|eE cos θ|m⟩ = eER

ˆ 2π

0
ei(m−n)θ cos θ dθ =

eER

2
(δm,n+1 + δm,n−1). (3.4.37)

Clearly there is no first-order shift to the ground state energy, and so we use the second order
correction to find

E0 =
ℏ2

2mR2
− q2

R
− e2E2R4m

6ℏ2
+O(E3). (3.4.38)

For large E, the ground state will be localized at a point on the circle, and so we can write the
potential as 1

2eERθ
2. This looks like a harmonic oscillator, with ground state energy 1

2ℏω =

ℏ
2

√
eER
m . Thus, in total, the ground state energy at large E will be ℏ

2

√
eER
m − q2

R .

So much for nondegenerate perturbation theory. What if the Hamiltonian H has degenerate states
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and the perturbation breaks the degeneracy? For example, consider the two-state system

H = E0

(
1 0
0 1

)
+ λ

(
0 1
1 0

)
. (3.4.39)

At λ = 0, both states have energy E0. For λ ̸= 0, the energies are E0 ± λ. However, we cannot
obtain this result through nondegenerate perturbation theory, because we don’t have a unique
choice of the two eigenstates for the unperturbed Hamiltonian. It is clear how to fix this issue:
when there is a degenerate eigenspace in the unperturbed Hamiltonian, we should choose a basis
of eigenstates of the perturbation restricted to that eigenspace.

Problem 3.20 (M00Q1)
Consider a spin-12 particle constrained to move on a 1D line with a harmonic oscillator potential
and a magnetic field so that the Hamiltonian is:

H =
1

2m
p2 +

1

2
mω2x2 + ωSz. (3.4.40)

The first energy level is not degenerate but all the other levels are doubly-degenerate.

Now add a small magnetic field in the x̂ direction with a magnitude proportional to x. The
Hamiltonian is:

H =
1

2m
p2 +

1

2
mω2x2 + ωSz + αxSx. (3.4.41)

Calculate the energy difference in the levels to lowest order.

To clarify: for the initial Hamiltonian, the degeneracy is between states |n, ↑⟩ and |n+ 1, ↓⟩,
except of course for the ground state |0, ↓⟩ which is not degenerate. We now need to understand
how this degeneracy is split by the nonuniform magnetic field perturbation. The relevant matrix
element is

⟨n+ 1, ↓ |xSx|n, ↑⟩ =
ℏx0
2

√
n+ 1, (3.4.42)

so the perturbing Hamiltonian looks like ℏx0
2

√
n+ 1σx on this space. Using the eigenvectors

of σx and applying first-order perturbation theory, we find that the two levels are split by
αℏx0

√
n+ 1 = α

√
ℏ3(n+1)
2mω .

3.5 Time-Dependent Perturbations

Things change over time. That’s kind of the whole point of physics, I guess. So what happens
when a perturbation changes over time?

There are some limiting cases. For example, a perturbation can turn on suddenly, much faster than
any relevant timescales in the system. In this case, the state of the system does not change as a
result of the perturbation (it doesn’t have time to change), and so the old state evolves under the
new Hamiltonian. We’ve already done problems like this.
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In the opposite limit, a perturbation could change much more slowly than any relevant timescales;
in this case we refer to the perturbation as adiabatic. Intuitively, if the Hamiltonian is changing very
slowly, then the eigenstates also change slowly, and the system will have ample time to follow this
change and stay in “the same” state. For example, if we start with the ground state of a harmonic
oscillator and then adiabatically increase the frequency, we expect to end up in the ground state of
the higher frequency harmonic oscillator.

This intuition is made precise in the adiabatic theorem. Recall that the time dependent Schrödinger
equation iℏ∂tψ = Hψ can be solved by finding eigenstates H |ψn⟩ = En |ψn⟩, and then expanding
the solution in these eigenstates as

|ψ(t)⟩ =
∑

cne
−iEnt/ℏ |ψn⟩ , (3.5.1)

where cn = ⟨ψn|ψ(0)⟩. Inspired by this approach, imagine solving the time-independent Schrödinger
equation at all times,

H(t) |ψn(t)⟩ = En(t) |ψn(t)⟩ . (3.5.2)

It’s implied here that we’re doing this in a reasonable way, i.e., En(t) is continuous for all n.
Moreover, we assume that energy levels don’t cross – essentially, the system is nondegenerate at all
times. Now we can try to write our state as

|ψ(t)⟩ =
∑

cn(t)e
iθn(t) |ψn(t)⟩ , (3.5.3)

where θn(t) = −1
ℏ
´ t
0 En(t) dt is the generalization of the phase factor in the time-independent case.

Substituting this state into the Schrödinger equation, we find

iℏ
∑(

ċn(t) |ψn(t)⟩+ cn(t) |ψ̇n(t)⟩
)
eiθn(t) = 0. (3.5.4)

At a fixed time the energy eigenstates form a complete basis, and so acting with ⟨ψm(t)| we find

ċm(t) +
∑
n

cn(t) ⟨ψm(t)|ψ̇n(t)⟩ ei(θn(t)−θm(t)) = 0. (3.5.5)

So, we have a differential equation for the coefficients, but it depends on the inner products
⟨ψm(t)|ψ̇n(t)⟩. We know that H(t) |ψn(t)⟩ = En(t) |ψn(t)⟩, and differentiating this, we find

Ḣ(t) |ψn(t)⟩+H(t) |ψ̇n(t)⟩ = Ėn(t) |ψn(t)⟩+ En(t) |ψ̇n(t)⟩ , (3.5.6)

and so the inner product for m ̸= n is

⟨ψm(t)|ψ̇n(t)⟩ =
⟨ψm(t)|Ḣ(t)|ψn(t)⟩
En(t)− Em(t)

. (3.5.7)

Thus, we have

ċm(t) + cm(t) ⟨ψm(t)|ψ̇m(t)⟩+
∑
n̸=m

cn(t)
⟨ψm(t)|Ḣ(t)|ψn(t)⟩
En(t)− Em(t)

ei(θn(t)−θm(t)) = 0. (3.5.8)

Here comes the fun part. We’ve assumed the levels don’t cross (and what the hell, let’s assume
their separation is bounded below by some finite energy), and we’re assuming Ḣ(t) is as small as
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we want it to be. That means the nasty sum goes away, and we’re left with a linear equation which
can be readily integrated to give

cn(t) = cn(0) exp

(ˆ t

0
⟨ψn(t)|ψ̇n(t)⟩ dt

)
. (3.5.9)

There are two important points here. First, if cn(0) = 0, then it stays zero: adiabatic perturbations
don’t excite new energy levels, consistent with our intuition. Second, normalization requires that
⟨ψn(t)|ψ̇n(t)⟩ is pure imaginary, so we have a phase factor multiplying cn(0). This is the famous
Berry phase.

Problem 3.21 (M01Q1)
A spin 1/2 particle with magnetic moment µ is fixed to a point in space. Let |↑⟩ and |↓⟩ denote
the states with Sz =

1
2 and Sz = −1

2 . We turn on a constant magnetic field with magnitude B0

and the direction given by:

B = B0 (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) . (3.5.10)

Here θ and ϕ are constant angles.

a) Find the ground state. Denote it by |θ, ϕ⟩.
Now we make ϕ change slowly with time ϕ = ωt.

b) In the adiabatic limit that ω is very small, the wavefunction can be approximated as

|t⟩ ∼ eiφ(t) |θ, ωt⟩ . (3.5.11)

Here |θ, ωt⟩ is the state you found above. Find φ(t). (φ
(
2π
ω

)
is called the Berry phase.)

Suppose that at time t = 0 the particle is in the ground state |θ, 0⟩. Now we turn on the
magnetic field for a whole cycle until time t = 2π

ω . At the end of the cycle we keep the
magnetic field at the constant final value B = B0(x̂ sin θ + ẑ cos θ).

c) Find the probability, to leading order in ω, that at the end of the cycle the particle will be
in the excited state.

The potential is proportional to

−B · σ = −B0

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
. (3.5.12)

The eigenvalues of this matrix are clearly ±1, and the ground state will correspond to the +1
eigenstate because of the minus sign outside. This eigenstate is |θ, ϕ⟩ = cos θ2 |↑⟩+ sin θ

2e
iϕ |↓⟩.

The Berry phase here is given by

φ(t) =

ˆ t

0
⟨θ, ωt|

(
iω sin

θ

2
eiωt |↓⟩

)
dt = i(ωt) sin2

θ

2
. (3.5.13)
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This means that after a full rotation, the state acquires a phase φ
(
2π
ω

)
= 2π sin2 θ2 , so if θ ̸= 0, π

we will not return to the original state.

The adiabatic theorem tells us that the probability of transitioning to the excited state will
vanish at first order in ω, so we have to be more detailed. Let |0⟩ denote the ground state and
|1⟩ the excited state. We go back to the exact equation we derived, which in this case looks like

ċ1(t) + c1(t)

⟨
1

∣∣∣∣ ddt
∣∣∣∣ 1⟩+ c0(t)

⟨1|Ḣ(t)|0⟩
E0 − E1

ei(E0−E1)t/ℏ = 0. (3.5.14)

The energies are E1 = µB and E0 = −µB, and the inner products are⟨
1

∣∣∣∣ ddt
∣∣∣∣ 1⟩ =

(
sin

θ

2
eiωt ⟨↑| − cos

θ

2
⟨↓|
)(

−iω sin
θ

2
e−iωt |↑⟩

)
= −iω sin2

θ

2
, (3.5.15)

⟨1|Ḣ(t)|0⟩ = ωµB0 sin θ ⟨1 | (σy cosωt− σx sinωt) | 0⟩ = −ieiωtωµB0 sin θ cos θ, (3.5.16)

so we have
ċ1(t)− iω sin2

(
θ

2

)
c1(t) + c0(t)

i

2
ω sin θ cos θei(ω−2µB0/ℏ)t = 0. (3.5.17)

To zeroth order in ω we have c0(t) = exp
(
iωt sin2 θ2

)
and c1(t) = 0. This equation then gives

c1(t) =
iω

4
sin 2θ

ˆ t

0
exp

(
i

(
ω − 2µB0/ℏ+ ω sin2

θ

2

)
t

)
dt (3.5.18)

=
iω sin 2θ

4
(
ω − 2µB0 + ω sin2 θ2

) (exp(i(ω − 2µB0/ℏ+ ω sin2
θ

2

)
t

)
− 1

)
. (3.5.19)

The probability of transitioning to the excited state is

P = |c1(2π/ω)|2 =
sin2 θ cos2 θ(

1 + sin2 θ2 − 2µB0/ℏω
)2 sin2(π sin2 θ2 − 2πµB0

ℏω

)
(3.5.20)

That last part was a little unwieldly, so let’s make it wieldier. Specifically, it would be nice to
do away with all these factors of eiEt/ℏ, because, boring. So let’s absorb those factors into the
definition of the states. To be precise, let H(t) = H0 + V (t), that is, the unperturbed Hamiltonian
H0 is fixed. Then we define new “interaction picture” states

|ψn(t)⟩I = eiEnt/ℏ |ψn(t)⟩ , (3.5.21)
or more generally, |ψ(t)⟩I = eiH0t/ℏ |ψ(t)⟩. All this means is that the only time dependence of
|ψn(t)⟩ comes from V (t). Another way to think of it is as a mix between the Schrödinger and
Heisenberg formulations, where operators evolve according to H0 in the Heisenberg sense while
states evolve according to V (t) in the Schrödinger sense. It’s not that big a deal, but people tend
to get really hot and bothered over this for some reason.

Anyway, with that out of the way, the Schrödinger equation in the interaction picture reads
iℏ |ψ(t)⟩I = VI(t) |ψ(t)⟩I , (3.5.22)

where VI(t) = eiH0t/ℏV (t)e−iH0t/ℏ. If we expand in eigenstates |ψn⟩ of H0,

|ψ(t)⟩I =
∑

cn(t) |ψn⟩ , (3.5.23)
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then we find

iℏċn(t) =
∑

cm(t) ⟨ψn|VI(t)|ψm⟩ =
∑

cm(t)e
i(Em−En)t/ℏ ⟨ψn|V (t)|ψm⟩ . (3.5.24)

This is at least a little bit nicer looking.

Problem 3.22 (J12Q1)
Consider a two-level system with two orthogonal states |g⟩ and |e⟩. It has the time-dependent
Hamiltonian:

H(t) = ℏω |e⟩ ⟨e|+ V cos(ωt) (|e⟩ ⟨g|+ |g⟩ ⟨e|) . (3.5.25)
Assume that the time-dependent term is small, ℏω ≫ V > 0, so that you may make the
corresponding approximation. At time t = 0 the state of the system is specified by the initial
complex amplitudes cg0 and ce0:

|ψ(t = 0)⟩ = cg0 |g⟩+ ce0 |e⟩ . (3.5.26)

What is the state of the system |ψ(t)⟩ at other times t?

For the coefficients in the interaction picture, we may immediately write

iℏċg(t) = ce(t)e
iωtV cos(ωt) = V ce(t)

e2iωt + 1

2
, (3.5.27)

iℏċe(t) = cg(t)e
−iωtV cos(ωt) = V cg(t)

e−2iωt + 1

2
. (3.5.28)

We can formally solve this system by writing(
cg
ce

)
= exp

(
− iV

ℏ

ˆ t

0

(
0 e2iωt+1

2
e−2iωt+1

2 0

)
dt

)(
cg0
ce0

)
. (3.5.29)

Now we have to make this a little less formal. The bowties are coming off. We have
ˆ t

0

(
0 e2iωt+1

2
e−2iωt+1

2 0

)
dt =

(
0 t

2 + 1
2ωe

iωt sinωt
t
2 + 1

2ωe
−iωt sinωt 0

)
. (3.5.30)

Evidently this is Hermitian, a good check on the arithmetic so far. But the exact arithmetic
going forward does not look pleasant (though it is completely doable), so it’s time to use the
approximation V

ℏω ≪ 1 to ignore the second terms, so we have(
cg
ce

)
= exp

(
− iV t

2ℏ
σx

)(
cg0
ce0

)
(3.5.31)

= e−
iV t
2ℏ
cg0 + ce0

2

(
1
1

)
+ e

iV t
2ℏ
cg0 − ce0

2

(
1
−1

)
(3.5.32)

=

(
cg0 cos

(
V t
2ℏ
)
− ice0 sin

(
V t
2ℏ
)

ce0 cos
(
V t
2ℏ
)
− icg0 sin

(
V t
2ℏ
)) (3.5.33)

This is in the interaction picture, so ce(t) is the coefficient of eiωt |e⟩. Thus, the state is

|ψ(t)⟩ =
(
cg0 cos

(
V t

2ℏ

)
− ice0 sin

(
V t

2ℏ

))
|g⟩+ eiωt

(
ce0 cos

(
V t

2ℏ

)
− icg0 sin

(
V t

2ℏ

))
|e⟩ .

(3.5.34)
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Let’s come up with a more systematic way of taking advantage of the smallness of a perturbing
potential. The Schrödinger equation in the form iℏ∂t |ψ(t)⟩I = VI |ψ(t)⟩I implies that if we let
|ψ(t)⟩I = U(t) |ψ(0)⟩I , then

iℏ∂tU(t) = VI(t)U(t). (3.5.35)

Taking an integral we have

U(t) = − i

ℏ

ˆ t

0
dt′ VI(t

′)U(t′). (3.5.36)

To zeroth order in the potential, U(t) = 1. Using this equation, we can recursively obtain all higher
orders:

U (1)(t) = − i

ℏ

ˆ t

0
VI(t

′) dt′, (3.5.37)

U (2)(t) =

(
− i

ℏ

)2 ˆ t

0
dt′ VI(t

′)

ˆ t′

0
dt′′ VI(t

′′), (3.5.38)

(3.5.39)

and so on. To be fancy, we can write this as

U(t) = T exp

(
− i

ℏ

ˆ t

0
VI(t

′) dt′
)
, (3.5.40)

where T stands for time-ordering.

We can use this fancypants expansion for the time evolution operator to work out approximations
for the coefficients cn(t). We have

cn(t) = ⟨ψn(t)|U(t)|ψ(0)⟩ . (3.5.41)

Let’s say the system starts in state m, and some perturbation V (t) is applied for a finite time.
Then the amplitude of it ending up in state n would be

cn(t) = ⟨ψn|U(t)|ψm⟩ = δnm − i

ℏ

ˆ
⟨ψn|VI(t)|ψm⟩ dt+O(V 2) (3.5.42)

= δnm − i

ℏ

ˆ
ei(En−Em)t/ℏ ⟨ψn|V (t)|ψm⟩ dt+O(V 2). (3.5.43)

And voilá (is that accent in the right place?), there’s our approximation.

Problem 3.23 (J03Q2)
An isolated hydrogen atom in the 2s level has a very long lifetime for radioactive decay because
selection rules pretty much force it to decay by two-photon emission. In realistic situations, the
atom suffers collisions that push the 2s level into the 2p levels, from which it rapidly decays by
standard electric dipole emission.

In plasmas, the collisions are with ions that briefly subject the hydrogen atom to an electric field.
Let us study what happens when an ion of charge Q, moving at constant velocity v passes by the
H atom, making a closest distance of approach b. The electron in the atom sees a time-dependent
potential

V1(x, t) =
Qe

|b+ vt− x|
, b · v = 0. (3.5.44)
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Because the ion passes far from the atom, you can treat x as small and expand in powers of x.
Keep the term of first order in x and treat it as the perturbing potential that induces transitions
between the degenerate states of the n = 2 levels of hydrogen (the zeroth-order term doesn’t
depend on x and causes no transitions).

Use first-order time-dependent perturbation theory to find the transition amplitude for an atom
originally in the 2s level to wind up in one of the 2p levels.

You will need some hydrogen wave functions:

ϕ2s =
1

2
√
2πa3B

(1− r/2aB)e
−r/2aB , (3.5.45)

ϕ2p,0 =
z

4
√
2πa5B

e−r/2aB , (3.5.46)

ϕ2p,±1 =
x± iy

8
√
2πa5B

e−r/2aB . (3.5.47)

This is...a weird mix of pretty cool and pretty sadistic. But here we go. To first order in x we
have

V1(x, t) =
Qe

|b+ vt|

(
1 +

x cosψ

|b+ vt|

)
, (3.5.48)

where ψ = 0 is the direction of b+ vt. We first compute the matrix elements. We have

⟨ϕ2p,0|V1|ϕ2s⟩ =
1

16πa4B

Qe

|b+ vt|2

ˆ
d3r

(
(1− r/2aB)r

2 cos θ cosψe−r/aB
)
. (3.5.49)

The hitch in the wagon is cosψ. We can express this in spherical coordinates by noting that

cosψ =
x · (b− vt)

x|b− vt|
=

(sin θ cosϕ, sin θ sinϕ, cos θ) · (b− vt)

|b− vt|
. (3.5.50)

The cosϕ and sinϕ terms will vanish under the integral, so we have

⟨ϕ2p,0|V1|ϕ2s⟩ =
1

16πa4B

Qe(b+ vt) · ẑ
|b+ vt|3

ˆ
d3r

(
(1− r/2aB)r

2 cos2 θe−r/aB
)

=
1

8a4B

Qe(b+ vt) · ẑ
|b+ vt|3

ˆ ∞

0
r2 dr

ˆ 1

−1
d(cos θ)

(
(1− r/2aB)r

2 cos2 θe−r/aB
)

=
1

12a4B

Qe(b+ vt) · ẑ
|b+ vt|3

ˆ ∞

0
r2 dr

(
(1− r/2aB)r

2e−r/aB
)

= −3aB
Qe(b+ vt) · ẑ

|b+ vt|3
.

(3.5.51)

The other matrix elements follow similarly. We have

⟨ϕ2p,±1|V1|ϕ2s⟩ = −3

2
aB

Qe(b+ vt) · (x̂± iŷ)

|b+ vt|3
. (3.5.52)
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Now we have to integrate these. The key ingredient is
ˆ ∞

−∞

dt

|b+ vt|3
=

ˆ ∞

−∞

dt

(b2 + (vt)2)3/2
=

2

vb2
, (3.5.53)

from which we find

c2p,0 =
6iQeaB(b · ẑ)

ℏvb2
, (3.5.54)

c2p,±1 =
3iQeaB(b · (x̂± iŷ))

ℏvb2
. (3.5.55)

These are the transition amplitudes. The probability of the atom ending up in one of the 2p
states is

P =

1∑
m=−1

|c2p,m|2 =
(
6QeaB
ℏvb2

)2 (
(b · ẑ)2 + (b · x̂)2 + (b · ŷ)2

)
=

(
6QeaB
ℏvb

)2

. (3.5.56)

Problem 3.24 (J11Q2)
A particle of mass m is confined to the interval [0, L] by a one-dimensional infinite square well.
It is initially in the ground state of the Hamiltonian with the confining potential.

a) At time t = 0 the potential within the well is suddenly changed to:

V (x) =

{
V0, for 0 < x < L/2,

0 for L/2 < x < L
, (3.5.57)

with V0 ≪ E1 − E0 (the latter being the gap between the two lowest states of the initial
operator). The perturbation lasts for time T , after which the potential is restored to its
initial value. What is the probability that after the potential is restored the particle’s energy
is E1, calculated to first order in V0/(E1 − E0)?

b) In a second experiment the value of V0 (in the perturbing potential, as above) is increased
very slowly, and to a much higher value V ≫ E1. It is switched off instantaneously when
that value is reached. What is the probability that at this point the particle will have the
energy E1.

The wavefunctions for the two lowest states are

ψ0(x) =

√
2

L
sin
(πx
L

)
, ψ1(x) =

√
2

L
sin

(
2πx

L

)
. (3.5.58)

The relevant matrix element is

⟨1|V |0⟩ = 2V0
L

ˆ L/2

0
sin
(πx
L

)
sin

(
2πx

L

)
dx =

4V0
3π

. (3.5.59)
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This gives

c1(t > T ) = −4iV0
3πℏ

ˆ T

0
ei(E1−E0)t/ℏ dt = −iei(E1−E0)t/2ℏ 8V0

3π(E1 − E0)
sin

(
(E1 − E0)t

2ℏ

)
.

(3.5.60)
The probability is then

P = |c1(t > T )|2 =
(

8V0
3π(E1 − E0)

)2

sin2
(
(E1 − E0)t

2ℏ

)
. (3.5.61)

In the second experiment we have an adiabatic perturbation, and so the system will end up in
the ground state of the new potential with V0 ≫ E1. This ground state will be approximately

ψ′
0(x) =

√
4

L
sin

(
π(x− L/2)

L/2

)
(3.5.62)

and so the probability is

P = | ⟨1|0′⟩ |2 =

(
2
√
2

L

ˆ L

L/2
sin

(
2πx

L

)
sin

(
2πx

L
− π

)
dx

)2

=
1

2
. (3.5.63)

Problem 3.25 (M05Q1)a) A spatially uniform, time-independent electric field E is applied to
a hydrogen atom for which the electron was initially in its ground state ϕg = e−r/

√
π. The

field is much too small to ionize the atom in any reasonable time, but it slightly distorts the
electron charge distribution. The distorted electron wave function is ψ = ψ(r), where r is the
displacement (in units of the Bohr radius aB) of the electron from the nucleus. You can ignore
the spins of the electron and the nucleus. Since the polarized atom experiences no net force
in the uniform field E, the quantum-mechanical expectation value E′ = (e/a2B) ⟨ψ|r/r3|ψ⟩,
of the electric field produced at the nucleus by the distorted electron charge distribution must
cancel the applied field. Prove that this is so.

b) The applied electric field oscillates along the z axis with amplitude E cosωegt where ωeg =
(Ee − Eg)/ℏ is the Bohr frequency of the transition from the 1s ground state, of energy Eg,
to the 2p excited state, of energy Ee. Find E′ in this case. Assume that eEaB ≪ ℏ/τ , where
the natural radiative lifetime of the 2p state is given by

1

τ
=

8π2e2ω2
ega

2
Bz

2
eg

3hc3
. (3.5.64)

The matrix element of electron displacement along the z axis is

zeg =

ˆ
ϕ∗ezϕg d

3r, (3.5.65)

and e is the elementary charge.
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Since |ψ⟩ is an eigenstate of the perturbed Hamiltonian, we have

0 =
d

dt
⟨ψ|p|ψ⟩ = −⟨ψ|∇V |ψ⟩ = −

⟨
ψ

∣∣∣∣ (eaBE − e2r

aBr3

) ∣∣∣∣ψ⟩ , (3.5.66)

and the result follows.

Since the electric field is directed along the z axis, it will only couple the 1s state to the 2p state
with m = 0. The matrix element is

⟨2p, 0|V (t)|1s⟩ = eEaBzeg cosωegt. (3.5.67)

Therefore, we have
ċ2p(t) =

ieEaBzeg
ℏ

eiωegt cosωegt. (3.5.68)

However, this does not take into account the radiative decay of the 2p state. We are given that
the radiative lifetime τ is much less than the timescale for excitation by the electric field. We
can account for this phenomenologically by adding a decay term to the differential equation:

ċ2p(t) = −c2p
τ

− ieEaBzeg
ℏ

eiωegt cosωegt. (3.5.69)

In the time average we can replace eiωegt cosωegt by 1
2 , and so at steady state we have

c2p = − ieEaBzegτ
2ℏ

. (3.5.70)

The induced field is then given by

E′ =
2e

a2B
|c2p| ⟨2p|r/r3|1s⟩

=
e2Ezegτ

4
√
2πℏaB

ẑ

ˆ
(r cos θ)(r cos θ/r3)e−3r/2 d3r

=
4
√
2

27

e2zegτ

ℏaB
E.

(3.5.71)

3.6 Scattering Theory

When two particles love each other very much, sometimes they...have an interaction, so to speak.
This is just a special case of time-dependent perturbation theory: an incoming particle approaches
another particle, feels the interaction potential as it passes by, and possibly transitions into a
different state.

However, it’s somewhat annoying to think about the situation this way, because describing a
localized particle moving through space requires the use of a wavepacket. Instead, we can take
a time-independent stance. Starting with the free particle Hamiltonian H0, which has eigenstates
ψ(r) = eik·r, what happens when we add some interaction potential V (r) near the origin? The state
will change in some complicated way near the origin, but we generally don’t care: all we measure



148 CHAPTER 3. QUANTUM MECHANICS

is the amplitude of the state at large distances from the scattering source. At large distances
V (r) = 0, so we should still have an eigenfunction of the free-particle operator H0. From symmetry
and realistic physical considerations, we expect the state to look like

ψ(r) = eik·r + f(θ, ϕ)
eikr

r
. (3.6.1)

That is, we have the original state plus a spherical wave emanating from the interaction source.
The function f(θ, ϕ) should depend in some way on V (r), and should tell us something about the
differential cross section.

In fact, we have
dσ

dΩ
= |f(θ, ϕ)|2. (3.6.2)

To prove this, we look at the probability current for the state ψ(r). For any wavefunction ψ(r), we
have

∂

∂t

(
|ψ(r)|2

)
= ψ∗(r)

H

iℏ
ψ(r)− ψ(r)

H

iℏ
ψ∗(r) =

ℏ
2mi

(
−ψ∗∇2ψ + ψ∇2ψ∗) . (3.6.3)

Comparing this to the continuity equation ∂ρ
∂t +∇ · j = 0, we find a probability current of

j =
ℏ

2mi
(ψ∗∇ψ − ψ∇ψ∗) . (3.6.4)

Now substituting the scattered part of (3.6.1), the radial component is

jr =
ℏk
mr2

|f(θ, ϕ)|2. (3.6.5)

We can express the current as a particle flux, i.e.,

jr =
(velocity)× (particles per unit area)× (dσ)

r2(dΩ)
=

ℏk
mr2

dσ

dΩ
, (3.6.6)

which proves (3.6.2).

Now that we have established the importance of f(θ, ϕ), we should compute it. By conservation
of energy, we know that the incoming state with momentum k will mix with other states with the
same energy ℏ2k2

2m . So, we need to do degenerate perturbation theory in a case where the degenerate
eigenspace is infinite-dimensional (spanned by all k′ with k′2 = k2). This will look somewhat like
the time-independent perturbation theory we’ve done before, except with integrals instead of sums.
We start with the Schrödinger equation,

(H0 + V ) |ψ⟩ = E |ψ⟩ . (3.6.7)

Substituting (3.6.1), we find
V |ψ⟩ = (E −H0) |ψS⟩ , (3.6.8)

where |ψS⟩ is the scattered wave (the second term in (3.6.1)). It sure would be nice if we could
invert E −H0 to express |ψS⟩ in terms of |ψ⟩, but this operator is singular – this is the difficulty
with degenerate perturbation theory. Pretend for a second that this isn’t a problem, and let
G(E)(E −H0) = 1. Then we would have

|ψS⟩ = G(E)V |ψ⟩ , (3.6.9)
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or
|ψ⟩ = |ψi⟩+G(E)V |ψ⟩ , (3.6.10)

where |ψi⟩ is the incoming wave. This is known as the Lippmann-Schwinger equation.

This is not a user-friendly equation, so let’s work on it a bit. First, we need to figure out how
to define G(E) and what it is. Since the Hamiltonian has only real eigenvalues, G(E + iϵ) is
well-defined, so let

G±(E) = lim
ϵ→0

G(E ± iϵ). (3.6.11)

There are different analytic properties depending on which sign we take, so we’ll have to figure out
the sign later on (but spoiler alert, we’ll end up using the positive sign).

Now we evaluate G±(z) for Im z ̸= 0, where there are no issues in defining it. In the momentum
basis, z −H0 is diagonal with

⟨k′|(z −H0)|k⟩ =
(
z − ℏ2k2

2m

)
δ(k − k′). (3.6.12)

Letting Ek = ℏ2k2
2m , we thus find

G(z) =

ˆ
d3k

|k⟩ ⟨k|
z − Ek

. (3.6.13)

For the purpose of actual computations, we would like to know this operator in the position basis.
The matrix elements are

⟨r′|G(z)|r⟩ =
ˆ

d3k

(2π)3
eik·(r

′−r)

z − Ek
. (3.6.14)

Now, let z = ℏ2(q±iϵ)2
2m . We then have

⟨r′|G±(ℏ2q2/2m)|r⟩ = 2m

ℏ2

ˆ
d3k

(2π)3
eik·(r

′−r)

(q ± iϵ)2 − k2
(3.6.15)

=
m

2π2ℏ2

ˆ ∞

0
k2 dk

ˆ 1

−1
d(cosθ)

eik|r
′−r| cos θ

(q ± iϵ)2 − k2
(3.6.16)

=
m

π2ℏ2|r′ − r|

ˆ ∞

0

k sin(k|r′ − r|) dk
(q ± iϵ)2 − k2

. (3.6.17)

Kind of gross, but okay. We can do this last integral using Cauchy’s formula. The integrand is
even, so we can extend the integral to the whole real line with a factor of 1

2 . Furthermore, since
the integrand is real (well, almost), we can express the sin as an imaginary part, so

⟨r′|G±(ℏ2q2/2m)|r⟩ = m

2π2ℏ2|r′ − r|
Im

ˆ ∞

−∞

keik|r
′−r| dk

(q ± iϵ)2 − k2
. (3.6.18)

We can close this integral in the upper half plane, since the exponential in the numerator will
suppress the contribution from the semicircle. If we choose the positive sign, the pole at q + iϵ
contributes; if we take the negative sign, the pole at −q+iϵ contributes. In order to get an outgoing
spherical wave, we make the former choice, and so we have

⟨r′|G+(ℏ2q2/2m)|r⟩ = m

2π2ℏ2|r′ − r|
Im

(
−2πi

qeiq|r
′−r|

2q

)
= − m

2πℏ2|r′ − r|
eiq|r

′−r|. (3.6.19)
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Lovely. Now let’s use this in the Lippmann-Schwinger equation. All this legwork in finding the
position-space matrix elements means we can take the inner product with ⟨r| and find

ψ(r) = eik·r − m

2πℏ2

ˆ
d3r′

eik|r
′−r|

|r′ − r|
V (r′)ψ(r′). (3.6.20)

This is starting to look more user-friendly. We can do a little bit better by remembering that we
care about the wavefunction far from the origin, while the potential is localized near the origin,
so |r′ − r| will be very large. We can then approximate |r − r′| ≈ r − r̂ · r′, and so the integral
becomes

ψ(r) = eik·r − m

2πℏ2
eikr

r

ˆ
d3r′e−ikr̂·r

′
V (r′)ψ(r′). (3.6.21)

This is exactly the form we sought, with

f(θ, ϕ) = − m

2πℏ2

ˆ
d3r′e−ikr̂·r

′
V (r′)ψ(r′), (3.6.22)

where the dependence on θ and ϕ enters through r̂.

There is one last major issue with user-friendliness: we don’t know ψ(r′) a priori. In general this
can make things very difficult, but sometimes we can approximate the hardness away. For example,
if the interaction is weak, then ψ(r′) will be very nearly its unscattered value eik·r, and so we can
substitute this into the integral to determine f(θ, ϕ) to lowest order. This gives

f(θ, ϕ) = − m

2πℏ2

ˆ
d3r′ e−iq·r

′
V (r′), (3.6.23)

where q = kr̂ − k is the change in momentum. This is known as the Born approximation.

Problem 3.26 (M98Q2)a) Calculate the differential cross-section, dσ/dΩ, for a particle with
mass m in the spherical potential V (r) = V0e

−(r/a)2 , in first-order Born approximation. You
may need ˆ ∞

0
sin(r)e−(r/b)2r dr =

√
π

4
b3e−b

2/4. (3.6.24)

b) Calculate the total cross-section. It may be helpful to use the representation |k − k′| =
2|k| sin(θ/2), where θ is the angle between k and k′.

c) For which values of V0, a and/or k is the first-order Born approximation applicable?

First we use the Born approximation to find f(θ, ϕ). We have

f(θ, ϕ) = −mV0
2πℏ2

ˆ
d3r′ e−iq·r

′
e−(r′/a)2

= −mV0
ℏ2

ˆ ∞

0
r2 dr

ˆ 1

−1
d(cos θ) e−iqr cos θe−(r/a)2

= −2mV0
qℏ2

ˆ ∞

0
r sin(qr)e−(r/a)2 dr

= −
√
π

2

mV0a
3

ℏ2
e−(qa)2/4.

(3.6.25)
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The magnitude of the momentum transfer is q = 2k sin θ
2 , and so we have

dσ

dΩ
=
π

4

(
mV0a

3

ℏ2

)2

exp

(
−a2k2 sin2 θ

2

)
. (3.6.26)

The total cross section is

σ = 2π

ˆ π

0

dσ

dΩ
sin θ dθ

=
π2

2

(
mV0a

3

ℏ2

)2 ˆ π

0
sin θ exp

(
−1

2
a2k2(1− cos θ)

)
dθ

=
π2

2

(
mV0a

2

kℏ2

)2 (
1− e−a

2k2
)
.

(3.6.27)

The Born approximation is applicable whenever f(θ,ϕ)
r is small in the region of the interaction,

which gives mV0a2

ℏ2 ≪ 1.

Problem 3.27 (J00Q1)
A particle of mass m and energy ℏ2k2

2m scatters in a central potential V (r) which is everywhere
positive and vanishes rapidly as r → ∞. Let dσ/dΩ be the differential cross section as computed
in the Born approximation. For precisely backwards scattering you are given

dσ

dΩ

∣∣∣∣
back

= A
exp(−4λk)

k2
(3.6.28)

where A, λ are given parameters.

a) Calculate dσ/dΩ in the same approximation for arbitrary scattering angle.

b) Calculate V (r).

The scattering cross section depends on k through q = 2k sin θ
2 . For back scattering q = 2k, so

we have
dσ

dΩ
= A

4 exp (−2λq)

q2
= A

exp
(
−4λk sin θ

2

)
k2 sin2 θ2

. (3.6.29)

It follows that
f(θ, ϕ) =

√
A
2 exp(−λq)

q
. (3.6.30)

We also have
f(θ, ϕ) = − m

2πℏ2

ˆ
d3r e−iq·rV (r). (3.6.31)
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Taking the inverse Fourier transform gives

V (r) = −4πℏ2
√
A

m

ˆ
d3q

(2π)3
eiq·r

e−λq

q

= −2ℏ2
√
A

πmr

ˆ ∞

0
sin(qr)e−λq dq

= −2ℏ2
√
A

πm

1

r2 + λ2
.

(3.6.32)

Problem 3.28 (M04Q3)
A beam of particles of mass m and energy E propagates along the z axis of a coordinate system,
and scatters from the cubic potential

V =

{
v if |x| < L, |y| < L, |z| < L,

0 otherwise
. (3.6.33)

where v is a small constant energy.

a) Use the Born approximation to find an explicit formula for the scattering cross section dσ
dΩ

as a function of the angles θ and ϕ. Recall that spherical coordinates of a point in space
(r, θ, ϕ) are related to Cartesian coordinates (x, y, z) by x = r sin θ cosϕ, y = r sin θ sinϕ and
z = r cos θ. The Born approximation is easy to evaluate in one coordinate system and hard
in the other.

b) Under what circumstances is this approximation for the scattering cross section valid? Ex-
plain.

The Born approximation gives

f(θ, ϕ) = − m

2πℏ2

ˆ
d3r eiq·rV (r)

= − mv

2πℏ2

(ˆ L

−L
dx eiqxx

)(ˆ L

−L
dy eiqyy

)(ˆ L

−L
dz eiqzz

)
= −4mvL3

πℏ2
sinc(qxL) sinc(qyL) sinc(qzL).

(3.6.34)

The incoming wavevector is
√
2mE
ℏ ẑ, and so this becomes

f(θ, ϕ) = −4mvL3

πℏ2
sinc

(√
2mE

ℏ
L sin θ cosϕ

)
sinc

(√
2mE

ℏ
L sin θ sinϕ

)
sinc

(√
2mE

ℏ
L(cos θ − 1)

)
.

(3.6.35)
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The differential cross section is

dσ

dΩ
=

(
4mvL3

πℏ2

)2

sinc2

(√
2mE

ℏ
L sin θ cosϕ

)
sinc2

(√
2mE

ℏ
L sin θ sinϕ

)
sinc2

(√
2mE

ℏ
L(cos θ − 1)

)
.

(3.6.36)

This approximation is valid whenever f(θ, ϕ) is small compared to the length scale of the poten-
tial, i.e., when mvL2

ℏ2 ≪ 1.

In the last problem, there was some weirdass angle dependence because the potential wasn’t spher-
ically symmetric. Conversely, when the potential is spherically symmetric (the typical case), the
weirdass-osity (technical term) is restricted by the symmetry. We can show this more clearly by us-
ing a basis |k, ℓ,m⟩ adapted to the conserved L2 and Lz operators. From (3.3.43), the wavefunction
of this state satisfies

u′′ −
(
ℓ(ℓ+ 1)

r2
+

2mV (r)

ℏ2
− k2

)
u = 0. (3.6.37)

As r → ∞, the potential vanishes and we can ignore the centrifugal term, and the equation becomes
u′′ + k2u = 0, which implies the wavefunction is given by

ψk,ℓ,m(r, θ, ϕ) =

(
A
eikr

r
+B

e−ikr

r

)
Y m
ℓ (θ, ϕ). (3.6.38)

Conservation of probability requires |A| = |B|, so we can express the radial part as sin(kr − φℓ).
A detailed solution to the free-particle radial equation (including the centrifugal term) gives

ψk,ℓ,m(r, θ, ϕ) =

√
2

π
kjℓ(kr)Y

m
ℓ (θ, ϕ). (3.6.39)

The functions jℓ(kr) are spherical Bessel functions (but fun fact, they can be expressed in terms of
elementary functions). Their asymptotic behavior allows us to fix φ(0)

ℓ = ℓπ
2 . When we include the

potential, we can parametrize its effects in terms of phase shifts φℓ = φ
(0)
ℓ − δℓ.

Now we expand the scattered state in these bases. For the free particle basis, this amounts to
finding an expansion of f(θ, ϕ) in spherical harmonics. Spherical symmetry means there can be no
ϕ dependence, so in fact we just have f(θ) expanded in the m = 0 components:

f(θ) =
∑
ℓ

fℓY
0
ℓ (θ). (3.6.40)

Then we can expand the incoming wave as

eikz =
∑
ℓ

Bℓjℓ(kr)Y
0
ℓ (θ), (3.6.41)

so that the total scattered state is∑
ℓ

(
Bℓjℓ(kr) +

fℓe
ikr

r

)
Y 0
ℓ (θ). (3.6.42)

Alternatively, we could expand in the basis with phase shifts, giving∑
ℓ

Aℓ
ϕk,ℓ(r)

r
Y 0
ℓ (θ). (3.6.43)
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Equating these two, we find

Bℓjℓ(kr) +
fℓe

ikr

r
= Aℓ

ϕk,ℓ(r)

r
, (3.6.44)

which implies the asymptotic relation

Bℓ sin(kr − ℓπ/2) + fℓe
ikr = Aℓ sin(kr − ℓπ/2 + δℓ). (3.6.45)

The coefficients Bℓ do not depend on the potential, and in fact we have Bℓ = iℓ
√
4π(2ℓ+ 1).

Expanding everything in terms of e±ikr and solving for fℓ gives

fℓ =
√
4π(2ℓ+ 1)

eiδℓ sin δℓ
k

. (3.6.46)

It follows that
dσ

dΩ
=

4π

k2

∣∣∣∣∣
∞∑
ℓ=0

√
2ℓ+ 1fℓe

iδℓ sin δℓY
0
ℓ (θ)

∣∣∣∣∣
2

. (3.6.47)

By orthogonality of the spherical harmonics, the total cross section reduces to

σ =
4π

k2

∞∑
ℓ=0

(2ℓ+ 1) sin2 δℓ. (3.6.48)

So, we’ve reduced the whole problem to computing some pesky phase shifts.

Problem 3.29 (M05Q2)
A particle of mass m and kinetic energy E scatters from a thin spherical shell of radius R. The
scattering potential can be approximated by

V = vRδ(r −R) (3.6.49)

where r is the distance of the particle from the scattering center, v is a characteristic energy,
and δ denotes a Dirac delta function.

a) Derive the S-wave scattering cross-section σ0 in terms of E, m, v, R, and ℏ.

b) For what energies E does σ0 vanish? Explain.

c) Derive a formula for σ0 when E = 0.

d) For what values of v does σ0 → ∞ as E → 0 in c)? Explain.

The radial Schrödinger equation is

d2u

dr2
+

(
2mE

ℏ2
− 2mvR

ℏ2
δ(r −R)

)
u = 0. (3.6.50)

Let k =
√
2mE
ℏ . Since u(0) = 0, we have u(r) ∼ sin kr for r < R. For r > R, we have

u(r) ∼ A sin (kr + δ0). To solve for δ0, we use the boundary condition at R,

u′(R+ 0)− u′(R− 0) =
2mvR

ℏ2
u(R), u(R+ 0) = u(R− 0). (3.6.51)
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This implies

Ak cos(kR+ δ0)− k cos(kR) =
2mvR

ℏ2
sin(kR), (3.6.52)

A sin(kR+ δ0) = sin(kR). (3.6.53)

Dividing these and solving, we find

δ0 = cot−1

(
2mvR

ℏ2k
− cot(kR)

)
− kR, (3.6.54)

which gives

σ0 =
4π

k2
sin2 δ0 =

4π

k2

(
2mvR

ℏ2

)2 sin2(kR)

k2 + (2mvR/ℏ2 − k cot kR)2
. (3.6.55)

From this we see that σ0 vanishes when kR = πn, or when E = n2π2ℏ2
2mR2 .

Taking the limit as k → 0, we find

σ0(E = 0) = 4πR2

(
1− ℏ2

2mvR2

)−2

. (3.6.56)

When v = ℏ2
2mR2 , we have σ0 → ∞ as E → 0. This is the value of v for which there is a bound

state at E = 0.

What about computing phase shifts in more general cases? We go back to the Schrödinger equation.
Assume the potential vanishes outside some radius R. Then the phase-shifted asymptotic solution
corresponds to the following exact radial wavefunction for r > R:

Rℓ(r) = eiδℓ (cos δℓjℓ(kr)− sin δℓnℓ(kr)) , (3.6.57)

where jℓ is a spherical Bessel function as before and nℓ is a spherical Bessel function of the second
kind. Note that

j0(x) =
sinx

x
, n0(x) = −cosx

x
. (3.6.58)

Using this, we can evaluate a logarithmic derivative at r = R:

βℓ =

(
r

Rℓ

dRℓ
dr

)
r=R

= kR
j′ℓ(kR) cos δℓ − n′ℓ(kR) sin δℓ
jℓ(kR) cos δℓ − nℓ(kR) sin δℓ

. (3.6.59)

Solving this for δℓ, we find
tan δℓ =

kRj′ℓ(kR)− βℓjℓ(kR)

kRn′ℓ(kR)− βℓnℓ(kR)
. (3.6.60)

Computing phase shifts is thus reduced to computing the βℓ. We can find these by solving the
radial Schrödinger equation for r < R, where the potential is nonzero.

Problem 3.30 (J03Q1)
Consider the scattering of quantum-mechanical particles by a spherical square-well in three
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dimensions given by a radial potential

V (r) =

{
V0 for r < a

0 otherwise
(3.6.61)

having a constant depth V0 within a radius a > 0 of the origin. Assume that the particles have
an extremely low energy E > 0, that is, a

√
2mE ≪ ℏ. In this case only partial waves of angular

momentum L = 0 suffer appreciable scattering.

a) Calculate the total cross section for the case of an attractive potential with depth V0 < 0.

b) Starting from the answer you derived, consider now the case of scattering from a hard sphere,
by taking the potential to be repulsive (V0 > 0) in the limit V0/E → ∞. Show that the
answer is 4πa2 (four times bigger than the classical result).

We are assuming only the ℓ = 0 mode contributes, and so the total cross section is just σ =
2πℏ2
mE sin2 δ0. To find δ0, we use the Schrödinger equation for r < R and ℓ = 0,

d2u

dr2
+

2m(E − V0)

ℏ2
u = 0. (3.6.62)

Since u(0) = 0, the solution is u(r) ∼ sin

(√
2m(E−V0)

ℏ r

)
, giving

β0 = x cotx, (3.6.63)

where x = a

√
2m(E−V0)

ℏ . Letting y = a
√
2mE
ℏ , this gives

tan δ0 =
yj′0(y)− x cotxj0(y)

yn′0(y)− x cotxn0(y)

=
y cos y − sin y − x cotx sin y

y sin y + cos y + x cotx cos y
.

(3.6.64)

We are given y ≪ 1, so making the appropriate approximations we find

tan δ0 =
−xy cotx
1 + x cotx

. (3.6.65)

This implies

σ = 4πa2
x2 cot2 x

1 + 2x cotx+ x2(1 + y2) cot2 x
. (3.6.66)

Now we take a repulsive potential with V0/E → ∞. This means |x| ≫ 1, and so

σ → 4πa2

1 + y2
≈ 4πa2. (3.6.67)
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3.7 Additional Problems

Problem 3.31 (J13Q2)
Consider two indistinguishable nonrelativistic bosons of mass m, constrained to move one-
dimensionally around a circle of perimeter L. The particles each have spin 1, and they interact
via a spin-independent potential that is a Dirac delta function: V (x1, x2) = gδ(x1 − x2), where
xi is the position on the circle (in arc length) of particle i.

a) First look at zero interaction, g = 0, being careful to only include states of the correct sym-
metry for these indistinguishable spin-1 bosons. What are the energies and the degeneracies
of the ground state and of the lowest energy excited state? In each case, say what value(s)
of total spin these states may have.

b) Add a weak interaction g ̸= 0. Now what are the degeneracies of the ground state and the
lowest-energy excited state? For each sign of g, say what value(s) of total spin these states
may have.

c) Solve for a two particle ground state wavefunction, including showing the spin state. Do this
first at g = 0, and then at all other g ̸= 0. In the latter case you may leave one parameter
in the wavefunction specified only as the solution to an equation that you will not be able to
solve analytically.

The spatial states for a single particle are given by the wavefunction

ψn(x) ∼ e2πinx/L, (3.7.1)

where n ∈ Z. The energy of a state is ℏ2
2mL2n

2. In each spatial state the particle can have spin
component -1, 0, or 1.

To form the two-particle state, the spatial and spin wavefunctions must be either both symmetric
or both antisymmetric. The ground state will be the symmetric combination of ψ0 with itself,
and spins in a symmetric combination; the spin can be 0 or 2, giving a total degeneracy of 6. The
lowest excited state will be a combination of ψ0 and ψ±1; the combination can be symmetric, in
which case the spin is 0 or 2, or antisymmetric, in which case the spin is 1. The total degeneracy
is 18.

The degeneracy of the ground state is due to spin alone, so when we add the spin-independent
interaction the ground state degeneracy is unchanged. The degeneracy between the symmetric
and antisymmetric combinations of the spatial ψ0 and ψ±1 wavefunctions is broken by the
potential. For g > 0, the first excited state is the antisymmetric combination, which has total
spin 1, and total degeneracy 6. For g < 0, the first excited state is the symmetric combination,
with total spin 0 or 2 and total degeneracy 12.

To solve for the ground state wavefunction, we start with general solutions to the free-particle
Schrödinger equation for both x1 < x2 and x1 > x2:

ψ(x1, x2) =

{
A exp(i(k1x1 + k2x2)) +B exp(i(k2x1 + k1x2)) x1 < x2,

C exp(i(k1x1 + k2x2)) +D exp(i(k2x1 + k1x2)) x1 > x2
. (3.7.2)
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The ground state will be symmetric, and ψ(x1, x2) = ψ(x2, x1) forces A = D, B = C. To relate
A and B, we use the boundary condition at the delta function. Integrating the Schrödinger
equation on a small line from (x− ϵ, x) to (x+ ϵ) gives

− ℏ2

2m
∆

(
∂ψ

∂x1

)
+ gψ = 0. (3.7.3)

Substituting our ansatz gives

i(k2 − k1)(A−B) = g(A+B). (3.7.4)

We can solve this for B/A, giving

B

A
= −g + i(k1 − k2)

g − i(k1 − k2)
≡ eiα. (3.7.5)

Up to normalization this fixes all the coefficients. To fix k1 and k2 we use periodicity; periodicity
between (x1, x2) = (0, 0) and (L, 0) requires

eik1L + ei(k2L+α) = 1 + eiα. (3.7.6)

Similarly, for (−L, 0) we obtain

e−ik2L + ei(−k1L+α) = 1 + eiα. (3.7.7)

Clearly we should have k1 = −k2 ≡ k. Taking norms gives

cos(2kL− α) = cosα, (3.7.8)

so kL = α + πn. For the ground state we want the lowest value of k2, so we take n = 0. It
follows that k will be the solution to

kL = α = π + 2 tan−1 2k

g
, (3.7.9)

which we cannot solve analytically. In summary, the ground state spatial wavefunction is

ψ(x1, x2) = A

{
exp(ik(x1 − x2)) + eiα−ik(x1−x2) x1 < x2,

exp(−ik(x1 − x2)) + eiα+ik(x1−x2) x2 > x1
, (3.7.10)

and the spin state is one of the six symmetric states.

Problem 3.32 (M01Q2)
Consider two hydrogen atoms with a fixed distance r between their nuclei that is large compared
to the size of the atoms. Treat the Coulomb interaction as instantaneous (no retardation), and
neglect the interactions between the spins.

a) The ground state energy of this pair of atoms depends on r as C0 +A0r
−δ0 + . . ., where C0,

A0 are constants. Find δ0.
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b) Give an order of magnitude estimate for A0 and give a general argument why A0 should be
negative.

c) Now consider the first excited state of the system (keeping the distance r between the nuclei
fixed and large). The energy depends on r as C1 +A1r

−δ1 + . . .. Find δ1.

d) Estimate at what distance (between the atoms) you will have to take into account the retar-
dation effects in electromagnetism.

Each atom will be slightly polarized in the same direction, so each atom experiences the dipole
field of the other. The dipole moment of each atom is proportional to the dipole field it experi-
ences. Since dipole fields fall off as r−3, the interaction energy will fall off as r−6, so δ0 = 6.

The dipole field will have magnitude ea0
r3

. The dipole moment will be proportional to this, and by
dimensional analysis the constant of proportionality should be of order a30. This gives A0 ∼ e2a50.

In the first excited state, one of the atoms is in the p state, so thinking classically it already has
a dipole moment of order ea0. This dipole moment induces a dipole in the other atom, which
then feels the dipole field, and so we have δ1 = 3.

Retardation effects become important when an electron can “move” around its atom in the time
it takes for electromagnetic effects to propagate back and forth. By the uncertainty principle the
electron velocity is of order ℏ

mea0
, and so retardation is important when r ∼ mea0c

ℏ a0. Substituting
the actual values of these quantities gives about 20a0.

Problem 3.33 (J04Q2)
Two observers in different inertial frames will need different wave functions to describe the same
physical system. To make things simple we will consider how it works in one dimension: The
first observer uses coordinates (x, t) and a wave function ψ(x, t) while the second uses (x′, t)
and ψ̂(x′, t) with, of course, x′ = x − vt, v a constant velocity. The wave functions for the two
observers are said to be related as follows:

ψ̂(x′, t) = ψ(x, t) exp

(
− i

ℏ

[
mvx− m

2
v2t
])

. (3.7.11)

Despite its innocuous look (it’s just a phase!) this transformation has interesting effects!

a) Let’s verify that it makes sense. Suppose ψ(x, t) is the wave function for a free particle
of momentum p. Show that ψ̂(x′, t) is the wave function of a free particle with a different
momentum. What is its momentum?

b) Now let’s put this to work. Suppose we have a harmonic oscillator in its ground state for
< 0; its wave function is

ψ(x, t) = N exp

(
−mω

2ℏ
x2 − i

2
ωt

)
, (3.7.12)
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where N is a normalization constant. Suppose that at t = 0 the potential suddenly starts to
move at velocity v. Because the wave function does not change immediately, it is no longer
the ground state wave function of the moving harmonic oscillator. What is the probability
of finding the system in the moving ground state at a later time t > 0?

If ψ(x, t) = exp
(
ipx
ℏ − i p

2t
2mℏ

)
, then we have

ψ̂(x′, t) = exp

(
i(p−mv)(x′ + vt)

ℏ
− i

p2t

2mℏ
+ i

mv2t

2ℏ

)
= exp

(
i(p−mv)x′

ℏ
− i

(p−mv)2t

2mℏ

)
,

(3.7.13)

as expected.

To solve the harmonic oscillator problem, we use the given transformation to view the system in
a frame where the particle is suddenly given a velocity −v at t = 0. At t = 0 the wavefunction
will be

ψ(x, t = 0) = N exp

(
−mω

2ℏ
x2 − i

ℏ
mvx

)
. (3.7.14)

Absorbing an additional factor into the normalization, this is

ψ(x, t = 0) = N exp

(
−mω

2ℏ

(
x+

iv

ω

)2
)
. (3.7.15)

Acting with the lowering operator a =
√

mω
2ℏ
(
x+ ℏ

mω
d
dx

)
gives

a |ψ⟩ = −i
√
mv2

2ℏω
|ψ⟩ , (3.7.16)

so we have a coherent state. Let α = −i
√

mv2

2ℏω . Then we have

|ψ⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ , (3.7.17)

so the probability of finding the system in its ground state will be

P0 = exp

(
−mv

2

2ℏω

)
. (3.7.18)



Chapter 4

Statistical Mechanics

True story: one day, Ludwig Boltzmann decided he was going to use the microscopic physics of
molecules to understand the macroscopic behavior of gases. Naturally, he needed to tabulate the
positions and velocities of every gas molecule so that he could use Newton’s laws to evolve the
system forward and see where it would lead. Boltzmann fired up MS Excel and started tabulating.
Modern versions of Excel have about a million rows, but Boltzmann lived a long time ago, when
Excel only had 65,536 rows. So, when Boltzmann got to the 65,537th molecule, he had to scrap the
project and develop statistical mechanics instead.

Figure 4.1: (Left) Sadi Carnot, whose bombass-titled book Reflections on the Motive Power of
Fire kicked off the study of thermodynamics. (Center) Ludwig Boltzmann, spreadsheet wizard and
discoverer of the statistical interpretation of entropy. (Right) Josiah Willard Gibbs, who initiated
a policy making energy available on a government-run exchange. He was planning to just call it
“free energy” but conservatives opposed the policy and branded it as “Gibbs free energy.” The
program’s website had serious problems at its launch, but now it’s working fine.

In 4.1, we’ll review thermodynamics and heat engines and stuff. In 4.2 and 4.3, we’ll look at
statistical mechanics and partition functions and see how things match up with thermodynamics.
In 4.4 we’ll let particles be friends with each other. In 4.5 and 4.6, we’ll mix in some Wacky
Wednesday fanfiction.

161
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Figure 4.2: “No step on snek” ∼ Ben Franklin.

4.1 Classical Thermodynamics

When you step on a snek, snek no like it. Snek pushes back. No step on snek.

The same principle holds for gases. No step on gas. More precisely, if you step on a gas, it will
push back with some pressure p. If p is greater than the pressure of the environment, the gas may
expand by some volume ∆V , in which case the environment does work

W = −p∆V (4.1.1)

on the gas.

We might be tempted to identify this work with the change in energy of the gas, much like we think
of the work W = kx∆x done on a spring as the change in its energy. However, pressure-volume
work is not the only means by which we can change the energy of a gas. For example, what if Brad
Pitt walks into the room? No pressure-volume work is done, but we all know there’s more energy
in that room. We refer to energy transfer via Brad Pitt injection or similar processes as heat. The
total differential of the internal energy U is then given by

dU = d̄W + d̄Q = −p dV + d̄Q (4.1.2)

where d̄Q denotes heat transfer. The symbol d̄ denotes an infinitesimal quantity which is not an
exact differential; we say that U is a state function, whereas work and heat are not state functions.
That’s a little piece of d̄-trivia.

From this expression alone we can obtain some observables. The heat capacity of a gas is the
heat required to raise it by one unit of temperature; it can be defined for temperature increases at
constant volume or at constant pressure. The heat capacities are

CV =

(
d̄Q

dT

)
V

=

(
dU + p dV

dT

)
V

=

(
∂U

∂T

)
V

, (4.1.3)

Cp =

(
d̄Q

dT

)
p

=

(
dU + p dV

dT

)
p

=

(
∂U

∂T

)
p

+ p
dV

dT
. (4.1.4)

Now seems like a good time to introduce the ideal gas: a gas with equation of state PV = NkBT ,
where N is the number of particles and kB is the Boltzmann constant (which is just a unit con-
version, it has no physical significance). This equation of state implies that U is a function of T
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Figure 4.3: Ideal, but not perfect, because of the second law of thermodynamics.

alone, and so for an ideal gas we have

CV =
dU

dT
, Cp =

dU

dT
+NkB. (4.1.5)

Intuitively, Cp > CV because if volume is not held constant, the gas will expand as we add heat,
thus dissipating some of the energy gain in the form of work done on the environment, so it takes
more heat to get the same temperature increase.

Even though d̄W is not an exact differential, we can express it in terms of the exact differential
dV . Ideally we would like to do the same thing for the heat transfer d̄Q, but this will require
some thought. We will base everything on the second law of thermodynamics, which says that it is
impossible to build a perfect refrigerator – a device which transfers heat up a temperature gradient
with no side effect.

Thermodynamics began with the study of heat engines, which are supposed to extract work from
a temperature gradient. Sadi Carnot, in his badass book “On the Motive Power of Fire,” showed
how to construct the most efficient possible heat engine between hot and cold temperatures TH
and TC . The idea is simple: extract heat QH from a reservoir at TH , cool the engine to TC in a
way that does not involve heat transfer – “adiabatically” – give heat QC to the reservoir at TC ,
and then heat the engine back to TH adiabatically.

Since we come back to the same place we started, there can be no total change in the internal
energy of the engine, since U is a state function. The engine receives a net height QH −QC , so it
must provide exactly this much work to its environment to balance energy. We had to input energy
QH (in the form of heat) to make the cycle go. Thus, the efficiency is

η =
QH −QC

QH
= 1− QC

QH
. (4.1.6)
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Figure 4.4: The many incarnations of Sadi Carnot, master of fire.

Imagine we could do better than this; a heat engine which extracts heat Q′
H and deposits Q′

C , so
its efficiency is

η′ = 1−
Q′
C

Q′
H

> η. (4.1.7)

Fancypants engine thinks it can beat Carnot? NOBODY BEATS CARNOT. Carnot is Benedict
Cumberbatch, Keanu Reeves and Albus Fucking Dumbledore all rolled into one (see Figure 4.4).

Let’s see why Carnot is an unbeatable sorceror-god. Let Q′
H − Q′

C = α(QH − QC). We can
approximate α arbitrarily well by a rational N

N ′ . Then imagine running the hypothetical engine N ′

times, and running the Carnot engine N times backwards (a key property of the Carnot engine is its
reversibility). This composite process would have the net effect of transporting heat NQH −N ′Q′

H

from the cold reservoir to the hot reservoir, without doing any work. Uh oh, sounds like a perfect
refrigerator – in order to avoid breaking the second law, we need NQH − N ′Q′

H < 0, or Q′
H >

N
N ′QH = αQH . But this means

η′ =
Q′
H −Q′

C

Q′
H

=
α(QH −QC)

Q′
H

<
QH −QC

QH
= η. (4.1.8)

Don’t mess with Carnot, motherfuckers.

The expression we have for the Carnot efficiency isn’t particularly useful; it would be better to
have η in terms of TH and TC directly. The copout answer is to say that we haven’t yet defined
temperature, so we might as well define it such that

ηCarnot = 1− TC
TH

. (4.1.9)

We can motivate this a bit better by looking at the Carnot cycle for an ideal gas. In this case we
instead define temperature to be proportional to the internal energy per particle, so the equation of
state implies U = αpV for some dimensionless constant α (which depends on the gas; later we will
show that α = 3/2 for monatomic gases and 5/2 for diatomic gases). The heat exchanges then take
place along isotherms pV = const. The temperature changes take place along “adiabats,” paths for
which d̄Q = 0. This implies

0 = d̄Q = dU − d̄W = α(p dV + V dp) + p dV = (α+ 1)p dV + αV dp. (4.1.10)

This implies pV γ = const where γ = α+1
α . Now we can construct a Carnot cycle explicitly in p−V

space. Starting at (p0, V0), we move along an isotherm to (ξ−1
1 p0, ξ1V0). We then follow an isotherm

to (ξ−1
1 ξ−γ2 p0, ξ1ξ2V0). We have to return to the original state by following an isotherm and then

an adiabat; clearly the only way to do so is through the point (ξ−γ2 p0, ξ2V0).

To find the efficiency, we need the heat transfers QH and QC . Along the isotherm at TH we have

d̄Q = (α+ 1)p dV + αV dp = p0V0
dξ

ξ
, (4.1.11)
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and so QH = p0V0 log ξ1. Similarly, QC = ξ1−γ2 p0V0 log ξ1, so

η = 1− ξ1−γ2 . (4.1.12)

From the equation of state for the ideal gas, we clearly have TC
TH

= ξ1−γ2 , so in fact

η = 1− TC
TH

. (4.1.13)

At last we can achieve our goal of rewriting d̄Q. We have shown that for a Carnot cycle, QC
QH

= TC
TH

.
Put another way, the Carnot cycle satisfies ˛

d̄Q

T
= 0. (4.1.14)

In fact, this holds for any reversible cycle, since we can approximate any reversible cycle by many
small Carnot cycles. Thus, for reversible cycles, d̄Q

T is an exact differential. We define

dS =
d̄Q

T
, (4.1.15)

and call S the entropy. Now we have

dU = T dS − p dV. (4.1.16)

Additionally, the indomitability of Carnot implies that for a generic (not necessarily reversible)
cycle,

¸ d̄Q
T ≥ 0, so the entropy S never decreases. This is the more familiar statement of the

second law of thermodynamics, but it is equivalent to forbidding perfect refrigerators.

Problem 4.1 (M12T2)
We have two large solid blocks with heat capacities C1 and C2. Assume these heat capacities are
each constant in the range of temperatures considered in this problem. Initially the two blocks
are at temperatures T1o and T2o and have entropies S1o and S2o, respectively, with T1o > T2o.
In this problem there are no volume changes.

a) Let these two blocks be in an isolated enclosure, so that no heat or work can flow in or out
from the rest of the universe. What is the maximum total entropy that this system of blocks
can reach? How do you describe this maximum entropy state? Justify your answer.

b) Alternatively, run a very small, reversible Carnot heat engine between the two blocks until
equilibrium is reached and no more work can be extracted. What is the final temperature?
How much work did the engine do?

Since the system is isolated, and there are no volume changes (so no pressure-volume work is
done), the blocks can only interact by exchanging heat. When a quantity d̄Q of heat is transferred
from the first block to the second block, we have the following relationships:

dS =
d̄Q

T2
− d̄Q

T1
, dT1 = − d̄Q

C1
, dT2 =

d̄Q

C2
. (4.1.17)
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Thus, the maximum total entropy will be reached when T1 = T2, after which any further heat
transfer would decrease entropy. Integrating the second two equations we find T1 = T1o − ∆Q

C1

and T2 = T2o +
∆Q
C2

, and substituting these relations into the entropy equation we find

dS =
d̄Q

T2o +∆Q/C2
− d̄Q

T1o −∆Q/C1
. (4.1.18)

Integrating this, we find

∆S =

ˆ ∆Q

0

(
dx

T2o + x/C2
− dx

T1o − x/C1

)
= C2 log

(
1 +

∆Q

C2T2o

)
− C1 log

(
1− ∆Q

C1T1o

)
,

(4.1.19)
and so the maximum total entropy is S1o + S2o + ∆S. From the equilibrium condition, we
find that the total heat transfer is ∆Q = (T1o − T2o)

(
C−1
1 + C−1

2

)−1. Substituting this and
simplifying, we find

S = S1o + S2o + C1 log
T

T1o
+ C2 log

T

T2o
, (4.1.20)

where T is the equilibrium temperature,

T =
C1T1o + C2T2o

C1 + C2
. (4.1.21)

If the heat exchange happens through a Carnot engine, then some of the heat extracted from the
first block will be converted to work before it is delivered to the second block. If d̄Q1 is extracted
from the first block and d̄Q2 is delivered to the second block, then reversibility requires

d̄Q1

T1
=
d̄Q2

T2
≡ dA. (4.1.22)

Thus, we have
dT1 = −T1

C1
dA, dT2 =

T2
C2

dA. (4.1.23)

Integrating we find T1 = T1oe
−A/C1 and T2 = T2oe

A/C2 ; setting these two equal, we find an
equilibrium temperature

T = T
C1

C1+C2
1 T

C2
C1+C2
2 . (4.1.24)

The total work output of the Carnot engine will be the heat extracted from the warm block
minus the heat delivered to the cold block, or

W = C1(T1 − T )− C2(T − T2) = C1T1 + C2T2 − (C1 + C2)T. (4.1.25)

Problem 4.2 (M98T1)
A Carnot engine uses n moles of an ideal gas as its working substance. The absolute temperatures
of its hot and cold reservoirs are denoted by T1 and T2, respectively. The net work performed
by the engine in one cycle of operation is W . The specific heats of the gas may be assumed
independent of the temperature. An investigator is asked to check the values of the reservoir
temperatures, but unfortunately she is not provided with a thermometer. However, she is able
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to measure W , and also the following volumes:

V1 = volume of working substance when first contacted with hot reservoir,
V2 = volume of working substance after extracting heat from hot reservoir,
V3 = volume of working substance when first contacted with cold reservoir,
V4 = volume of working substance after giving up heat to cold reservoir.

Derive expressions for the unknown temperatures, T1 and T2, in terms of n, W , ratios of the
above volumes, the molar gas constant R, and the ratio γ of the constant pressure and constant
volume specific heats for the gas.

Thermometers are pretty cheap. Just saying. Anyway, we can express the states of the engine
as

(p1, V1),

(
p1
V1
V2
, V2

)
,

(
p1
V1
V2

V γ
2

V γ
3

, V3

)
,

(
p1
V1
V2

V γ
2

V γ
3

V3
V4
, V4

)
. (4.1.26)

If make an adiabatic transformation on the final state to close the cycle, we find(
V1V3
V2V4

)1−γ
= 1 =⇒ V1V3 = V2V4. (4.1.27)

The heat extracted from the hot reservoir is

QH =

ˆ V2

V1

p1V1
V

dV = p1V1 log
V2
V1
, (4.1.28)

and similarly the heat delivered to the cold reservoir is

QC = p1
V1
V2

V γ
2

V γ
3

V3
V4
V4 log

V3
V4
. (4.1.29)

Simplifying, we have

W = QH −QC = p1V1

(
V2
V3

)γ−1

log
V2
V1
. (4.1.30)

Using the equation of state, we have p1V1 = nRT1, and so we find

T1 =
W

nR

(
V3
V2

)γ−1(
log

V2
V1

)−1

. (4.1.31)

Similarly,

T2 = T1
p3V3
p1V1

=
W

nR

(
log

V2
V1

)−1

. (4.1.32)

We have shown that isolated systems tend to maximize their entropy. We can also express this as
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a minimization of the internal energy. Using the identity(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1, (4.1.33)

we have (
∂U

∂x

)
S

= −
(
∂S

∂x

)
U

(
∂U

∂S

)
x

= −T
(
∂S

∂x

)
U

. (4.1.34)

Thus, if entropy is extremized with respect to all degrees of freedom x, so too is the internal energy.
Note that this assumes the entropy is held constant, meaning the system is adiabatically isolated.

If the system is coupled in other ways to its environment, then other functions are more appropriate
to describe equilibrium. The internal energy satisfies

dU = T dS − p dV, (4.1.35)

and so it is well-suited for systems which are adiabatically isolated (dS = 0) and which can do no
pressure-volume work (dV = 0). If instead we have a system coupled to a heat bath at some fixed
temperature, it makes more sense to use the Helmholtz free energy F = U − TS, which satisfies

dF = −S dT − p dV. (4.1.36)

The addition of −TS in order to change T dS to −S dT is called a Legendre transformation.

We can see the meaning of Helmholtz free energy more directly by thinking about the work a
system can perform. If a system is adiabatically isolated, with d̄Q = 0, then the amount of work
that can be extracted as a system moves from state A to state B is U(A) − U(B). If instead the
system is held at constant temperature, then the available work is

−
ˆ B

A
d̄W = −

ˆ B

A
(dU − T dS) = U(A)− U(B)− T (S(A)− S(B)) = F (A)− F (B). (4.1.37)

Thus, change in F measures the useful work from a thermally coupled system, just as change in U
represents available work from an adiabatically isolated system. If we consider all transformations
(not just reversible ones), then this statement becomes an inequality, and imposing dV = 0 (so the
system does no work) we find F (B) ≤ F (A). Thus, F is minimized in equilibrium for a system in
a heat bath.

We could also consider an adiabatically isolated system at constant pressure, rather than constant
volume. This is accomplished via the Legendre transformation

H = U + PV, (4.1.38)

defining the enthalphy H, which gives

dH = T dS + V dp. (4.1.39)

Finally, we could consider a system in a heat bath at constant pressure. This is described by the
Gibbs free energy,

G = U + PV − TS, (4.1.40)
with

dG = −S dT + V dp. (4.1.41)
In their respective situations, H and G are minimized at equilibrium, and differences in these
quantities set the maximum amount of work that can be extracted from a system.
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Problem 4.3 (M15T2)
The figure below shows a throttling process in which two pistons “push” and “pull” gas through
a porous divider (shown as a lightly hatched line) that is fixed inside a thermally insulated
cylinder. No heat flows into or out of the cylinder. Initially, all the gas is on the left hand side
of the divider and the right hand piston is up against the divider (top left plot). The top right
figure shows an intermediate state and the bottom figure shows the final state. The pistons are
moved in such a way that the pressure on the left hand side is always PL and the pressure on
the right side is PR, with PR < PL. The final volume is larger than the initial volume.

a) What thermodynamic potential has the same value at the end of the process as it did at the
start? Prove it!

b) If the gas is ideal, what is its change in the internal energy between initial and final states?

c) Suppose now that the gas has a van der Waals equation of state(
P +

N2a

V 2

)
(V −Nb) = NkT (4.1.42)

where a and b are small numbers. The Helmholtz free energy is

F = −NkT {ln[nQ(V −Nb)/N ] + 1} −N2a/V (4.1.43)

where nQ = (mkT/2πℏ2)3/2. What is the internal energy U?

d) What is the condition on the van der Waals coefficients a and b such that the gas cools on
expansion into a very large volume in a throttling process? Qualitatively interpret the result.
[Hint: 0 < Nb/V ≪ 1]

No heat flows into or out of the cylinder, so dS = 0. The pressure is held constant, so dp = 0.
Hence,

dH = T dS + V dp = 0, (4.1.44)
and enthalpy is constant throughout the process.

Since H = U + PV , the change in internal energy is PLVL − PRVR, where VL and VR are the
initial and final volumes of the left and right chambers, respectively.

We have U = F + TS, so in order to compute U we need to compute S. Since

dF = −S dT − p dV, (4.1.45)

we have
S = −

(
∂F

∂T

)
V

= Nk (log (nQ(V −Nb)/N) + 1) +
3

2
Nk, (4.1.46)
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which gives

U =
3

2
NkT − N2a

V
. (4.1.47)

The throttling process holds

H = U + pV =
3

2
NkT + V

(
p− N2a

V 2

)
= NkT

(
3

2
+

1

1−Nb/V

)
− 2N2a

V
(4.1.48)

constant. Since Nb≪ V , we can approximate this as

H ≈ NkT

(
3

2
+
N

V

(
b− 2a

kT

))
. (4.1.49)

In order to have T decrease as V increases, we must have

b <
2a

kT
. (4.1.50)

We can use thermodynamic potentials to derive various identities known as the Maxwell relations.
Starting from dU = T dS − p dV , we can use d2 = 0 to write

dT ∧ dS = dp ∧ dV. (4.1.51)

This equality of volume forms can be expressed in terms of Jacobians:((
∂T
∂a

)
b

(
∂T
∂b

)
a(

∂S
∂a

)
b

(
∂S
∂b

)
a

)
=

((
∂p
∂a

)
b

(
∂p
∂b

)
a(

∂V
∂a

)
b

(
∂V
∂b

)
a

)
, (4.1.52)

for any variables a, b. Picking specific examples for a and b, we can find various relations of
derivatives. For example, a = V and b = S gives(

∂T

∂V

)
S

= −
(
∂p

∂S

)
V

. (4.1.53)

Problem 4.4 (M03T1)
An elastic string is found to have the following properties:

• To stretch it to a total length x requires a force f = µx− αT + βTx. Assume that α, β, µ
are constants.

• Its heat capacity at constant length x is proportional to temperature: Cx = A(x)T .

We can use thermodynamic identities to derive from these facts a variety of other thermal
properties. More specifically:

a) Calculate
(
∂S
∂x

)
T

.

b) Show that A has to be independent of x.
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c) Calculate
(
∂S
∂T

)
x

and give the general expression for entropy S(x, T ) assuming S(0, 0) = B,
where B is a constant.

d) Compute the heat capacity at zero tension CF = T
(
∂S
∂T

)
f=0

.

For the string, force takes the place of (negative) pressure and length takes the place of volume,
so we have

dU = T dS + f dx. (4.1.54)

The Maxwell relations then take the form((
∂T
∂a

)
b

(
∂T
∂b

)
a(

∂S
∂a

)
b

(
∂S
∂b

)
a

)
=

((
∂x
∂a

)
b

(
∂x
∂b

)
a(

∂f
∂a

)
b

(
∂f
∂b

)
a

)
. (4.1.55)

Picking a = T and b = x, this gives(
∂S

∂x

)
T

= −
(
∂f

∂T

)
x

= α− βx. (4.1.56)

We have
Cx =

(
d̄Q

dT

)
x

= T

(
∂S

∂T

)
x

. (4.1.57)

This means S = A(x)T +B(x). From the previous part, we find

A′(x)T +B′(x) = α− βx. (4.1.58)

Since the right hand side is independent of T , we have A′(x) = 0.

We have already shown
(
∂S
∂T

)
x
= A, and so S(x, T ) = AT +B(x). The previous part shows that

B′(x) = α− βx, so we have

S(x, T ) = AT +B + αx− 1

2
βx2. (4.1.59)

When f is constant, we have

µdx− αdT + β(T dx+ x dT ) = 0 =⇒
(
∂x

∂T

)
f

=
α− βx

µ+ βT
. (4.1.60)

Thus,

CF = T

(
A+

(α− βx)2

µ+ βT

)
. (4.1.61)

Since f = 0 we have x = αT
µ+βT , and substituting this gives

CF = AT +
µ2α2T

(µ+ βT )3
. (4.1.62)
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The previous problem shows that much of the formalism is not specific to pressure and volume; any
intensive force-like quantity and extensive length-like quantity may enter into the internal energy
and other thermodynamic potentials. A common example is the particle number. We define the
chemical potential µ as the increase in internal energy when a particle is added to the system, so

dU = T dS − p dV + µdN. (4.1.63)

If we have multiple species in the same system, then they generically have different chemical po-
tentials. If the system is undergoing a phase transition, their chemical potentials must be equal.

Let’s assume that V , S, and N are all of the extensive variables on which U depends. If we scale
up the system, the energy should scale likewise, so

U(λS, λV, λN) = λU(S, V,N). (4.1.64)

Taking a derivative with respect to λ, we find

U = S

(
∂U

∂S

)
V,N

+ V

(
∂U

∂V

)
S,N

+N

(
∂U

∂N

)
V,S

= TS − pV + µN. (4.1.65)

Taking the differential, we find
S dT − V dp+N dµ = 0. (4.1.66)

This is known as the Gibbs-Duhem relation.

Problem 4.5 (J11T3)
We have had a cold December, and it is time for ice skating. The Clausius-Clapeyron equation
describes the slope, dPdT , of the 1st-order phase transition line in the pressure-temperature (P, T )
phase diagram.

a) Derive the Clausius-Clapeyron Equation for dP
dT in terms of the specific heat and the density

difference between the two phases.

b) For the phase change of ice to water, the latent heat of fusion L is about +3× 105 J/kg, and
the volume change ∆V is about −10−4m3/kg. Estimate the pressure needed to depress the
freezing point of ice by 5◦C.

c) Comment quantitatively on the urban legend that skates glide with low friction over ice
because the ice melts under the pressure of the skate blade pressing down on it. Assume the
skater is of mass 70 kg, the skate blade is 30 cm long and 5mm wide, and the temperature is
−5◦C.

For the two-phase system, the Gibbs-Duhem relation gives

S dT − V dp+N1 dµ1 +N2 dµ2 = 0, (4.1.67)

where N1 +N2 = N is the total number of particles. At the phase transition we have µ1 = µ2,
which means dµ1 = dµ2 along the coexistence curve, which implies

V

N
dp− S

N
dT = dµ. (4.1.68)
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This holds for both phases, so subtracting the relation on each side of the coexistence curve, we
find

dp

dT
=

∆S

∆V
=

L

T∆v
, (4.1.69)

where v is specific volume.

Substituting the values for water at 273K, we have

dp

dT
≈ −1× 107 J/m3K, (4.1.70)

so we would need about 5× 107 J/m3 of pressure to depress the freezing point by 5◦C.

The skater applies a pressure of about 7× 104 J/m3, much less than the requisite pressure we
derived from the Clausius-Clapeyron equation to melt the ice. This is strong evidence that a
magic ice queen is responsible for ice skating and other ice-related phenomena (see Figure 4.5).

Figure 4.5: The magic ice queen likely to be responsible for the physics of ice skating.

4.2 Canonical Ensemble

Now we seek to derive classical thermodynamics from a microscopic perspective. We start by
looking at a system which is completely isolated from its environment. Such a system has a fixed
energy U . We describe this system using the microcanonical ensemble, in which the probability of
the system being in a state s is given by

P (s) =
1

Ω

{
1 if U(s) = U

0 otherwise
. (4.2.1)

The assumption of a uniform distribution on the space of states with energy U is a fundamental
assumption of statistical mechanics. We will find that it works quite well. The factor Ω is inserted
for normalization. We define entropy to be

S = kB log Ω. (4.2.2)



174 CHAPTER 4. STATISTICAL MECHANICS

To justify this assumption, suppose we place two such systems in thermal contact. Then the total
energy U is fixed, but the subsystems can exchange heat, so they have energies U1 and U − U1

where U1 can vary. The total entropy is determined by

Ω =

ˆ U

0
Ω1 × Ω2 dU1 =

ˆ U

0
exp

(
S(U1) + S2(U − U1)

kB

)
dU1. (4.2.3)

The integrand will be sharply peaked at the equilibrium distribution of energies, where the argument
of the exponential is maximized. This gives

∂S1
∂U1

=
∂S2
∂U2

, (4.2.4)

which means T1 = T2. Thus, we recover the result (technically known as the zeroth law of thermo-
dynamics) that systems are in thermal equilibrium when they have equal temperatures.

Problem 4.6 (M02T3)
One of the all-time classic experiments was the measurement of the residual entropy S of ordinary
water-ice by Giauque and Stout. This is the entropy that ice has at a temperature of zero kelvin.
This entropy is not zero.

a) What ‘law’ does this violate? How would you make such an absolute determination of this
entropy?

Pauling proposed a model to explain this entropy and the problem here will be to calculate S
according to this model. The crystal structure of ice is such that each oxygen atom has 4 nearest
neighbor oxygen atoms. On each ‘bond’ between nearest neighbor oxygen pairs sits a hydrogen
atom, but it does not sit in the middle. It sits in one of two positions close to one of the two
oxygens at the end of the bond.

b) Assume there are N water molecules. If all hydrogen configurations are equally likely, what
is S?

Not all configurations are equally likely. Pauling introduced his “ice rule”: There are precisely
two hydrogen atoms close to each oxygen atom, reflecting the molecular structure of water.
Otherwise, all configurations are equally likely. This limits the number of configurations, but
presents a horrific combinatorial problem. Pauling simplified matters further with his Pauling
approximation: He estimated the fraction of allowed configurations by taking the hydrogen
configuration surrounding one oxygen atom to be independent of those surrounding all other
oxygen atoms.

c) Compute S on the basis of the Pauling approximation.

Residual entropy at zero temperature violates the so-called third law of thermodynamics. To
measure entropy at zero temperature, one could measure changes in free energy at very low
temperatures, since

S = −
(
∂F

∂T

)
V

. (4.2.5)
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Since each oxygen atom has four nearest neighbors, but the hydrogen atoms on each are shared
between two oxygen atoms, each one individually contributes a factor of 22 = 4 to the number
of configurations. Thus, in this first approximation the entropy is

S = kB log
(
4N
)
= NkB log 4. (4.2.6)

Using the Pauling approximation, we find
(
4
2

)
= 6 configurations per water molecule, as opposed

to the 16 we would have without the Pauling rule, so

S = NkB log
3

2
. (4.2.7)

We rarely encounter situations where the microcanonical ensemble is appropriate. Much more
commonly, we are given the temperature of a system rather than its internal energy. In this case,
we can think of the system as being coupled to a large reservoir at temperature T . The sum of
the system and the reservoir is isolated, so it can be described in the microcanonical ensemble.
Every state of the composite is equally likely, so the probability of a given state is proportional to
the corresponding number of states of the reservoir. The first order correction to the entropy of
the reservoir due to the energy E of the system is − ∂S

∂EE = −E
T , so the probability of the system

having energy E is

P (U) =
1

Z
exp

(
− E

kBT

)
, (4.2.8)

where
Z =

∑
exp

(
− E

kBT

)
(4.2.9)

is called the partition function. The sum is over all possible states of the system.

The partition function is surprisingly useful. For example, we can use it to compute the internal
energy, which in the canonical ensemble is the expectation value of energy:

U = ⟨E⟩ = 1

Z

∑
E exp

(
− E

kBT

)
=
kBT

2

Z

∂Z

∂T
= kBT

2∂(logZ)

∂T
. (4.2.10)

It is useful to define β−1 = kBT , so we can write this as

U = −∂(logZ)
∂β

. (4.2.11)

Since F = U − TS, we have

∂(βF )

∂β
= F − T

∂F

∂T
= F + TS = U. (4.2.12)

Comparing this with our expression for U in terms of Z, we find

F = −kBT logZ. (4.2.13)
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Problem 4.7 (J06T3)
A simple “toy model” model for how complementary strands of DNA are bound together resem-
bles a zipper (see figure). The two strands are connected by “links” (base pairs) spaced at equal
intervals d along the strands. It costs an energy ε to break a link, and a link can only be broken
if its neighbor to the right is also broken. An unbroken link is a unique internal state, but each
of the two dangling ends of a broken link can be one of g internal states.

F

F

d

broken links

(energy ε per broken
link; g internal states
for each half of the
broken link)

unbroken links
(energy 0 per broken
link; no internal states)

large distance to other
end of “DNA molecule”

At the right-hand end of the DNA molecule, the experimenter applies a tension force F to each
of the two strands to try to separate them. This force is not strong enough to separate the chains
at T = 0.

a) Assume that g = 1 (so broken links have no internal states). At finite temperatures kBT ≫ ε,
what is the mean number n of broken links near the end of the DNA molecule, when F = 0?
(Assume that nd is much smaller than the total length L of the DNA molecule.) How does
it change when the force is applied?

b) Now assume that g > 1. Write down the configurational partition function, and obtain the
free energy associated with the links between the strands. Obtain the critical temperature
Tc(g, ε, F,D) above which the two strands of an infinitely long DNA molecule would be pulled
apart by the applied force F .

c) Obtain an expression for n(T, g, ε, F, d) valid for an infinitely-long DNA molecule at all tem-
peratures less than Tc (including kBT ≪ ε), and make a sketch showing its principal features.

The partition function is given by

Z =
∑
n

e−nε/kBT =
1

1− e−ε/kBT
. (4.2.14)
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The mean number of broken links is

n =
1

Z

∑
n

ne−nε/kBT = −kBT
∂(logZ)

∂ε
=

e−ε/kBT

1− e−ε/kBT
. (4.2.15)

When force is applied, the energy cost of breaking a link changes to ε−Fd, and so the partition
function is

Z =
1

1− e(Fd−ε)/kBT
. (4.2.16)

For g > 1, the partition function becomes

Z =
∑
n

g2nen(Fd−ε)/kBT =
1

1− g2e(Fd−ε)/kBT
. (4.2.17)

The free energy is then
F = kBT log

(
1− g2e(Fd−ε)/kBT

)
. (4.2.18)

The critical temperature is then
Tc =

ϵ− Fd

2kB log g
. (4.2.19)

The expected number of broken links is

n =
∂F

∂ε
=

g2e(Fd−ε)/kBT

1− g2e(Fd−ε)/kBT
. (4.2.20)

The behavior as a function of T is shown below, for ϵ > Fd. When ϵ < Fd, the molecule is only
stable at high temperatures.

n

TTc

Problem 4.8 (J14T3)
Organic polymers are modeled as flexible chains whose links are rigid segments of length b that
can pivot freely relative to each other. In the random walk approximation, the effects of overlaps
between the links are ignored and the polymer configurations are taken to resemble random
paths of N steps.

Take it as given that, for a simple random walk:

i) the end to end distance R(N) scales as R(N) ≈ b
√
N .
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ii) the probability of landing at R after N steps (starting at the origin) is ≈ e−R
2/(2Nb2) (up

to irrelevant pre-factors).

a) At the level of the random walk approximation, what is the entropy of the idealized polymer
of N units with total length R?

b) The polymer’s self energy is modeled by a (repulsive) energy λ > 0 for any two units that
come within a fixed distance from each other (and zero contribution otherwise). Assuming
that the polymer’s units are spread relatively uniformly over a volume of diameter R, obtain
an approximate expression for the polymer’s free energy showing the dependence on λ, b, N ,
R and T (powers or simple functions). (You do not need to specify the constant coefficients.)

c) Minimizing the free energy, derive a relation of the form: ⟨R⟩ ≈ Nν for the order of magnitude
estimate of the equilibrium end-to-end distance of the self-repelling polymer (at fixed b and
λ > 0), in d dimensions. What value does the approximate expression for the free energy
yield for the exponent ν?

Each unit can be oriented in any direction, so there are (4π)N total ways to orient N units.
We are given that the probability of the walk ending at R is proportional to e−R2/(2Nb2), so the
probability of having total length R scales as R2e−R

2/(2Nb2). Thus, we have

Ω = (4π)N
R2e−R

2/2Nb2´∞
0 x2e−x2/2Nb2 dx

= 22N+1/2πN+1/2R2b−3N−3/2e−R
2/2Nb2 . (4.2.21)

The entropy is

S = kB log Ω ≈ kB

(
N log(4π) +

1

2
log(2π) + 2 logR− 3 log b− 3

2
logN − R2

2Nb2

)
. (4.2.22)

Since the rest of the problem is mostly qualitative, we may focus on the dominant term here,

S ≈ −kB
R2

2Nb2
. (4.2.23)

This term would be the same in any number of dimensions d.

The density of units scales as NR−d so the self energy scales as

U = αλN2R−d. (4.2.24)

Thus, the free energy is

F = U − TS = αN2R−d − kBT
R2

2Nb2
. (4.2.25)

Minimizing the free energy with respect to R gives

− dαNR−d−1 − 2kBTR

2Nb2
= 0 =⇒ ⟨R⟩ ∼ N

3
d+2 , (4.2.26)

so ν = 3
d+2 . Note that ν = 1 in one dimension, as we should expect for a self-repelling polymer

on a line.
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Problem 4.9 (J09T2)
In a lattice of N sites, each site is occupied by an atom at zero temperature. A lattice defect
occurs when an atom moves to an interstitial site. The energy cost of a defect is ∆. At finite
temperature T , we expect a finite number ⟨n(T )⟩ of defects to exist in equilibrium. Assume that
defects do not interact with each other.

a) Write down an expression for the partition function Z.

b) Calculate ⟨n⟩ and the total free energy F of the lattice from Z at temperature T .

c) Find the entropy S(T ) and heat capacity CV from F .

d) Use a purely statistical argument to rederive the entropy S starting with the total number of
configurations Wn with n defects. Using your answer for ⟨n⟩, show that S agrees with part
c).

e) Use physical arguments to reproduce your answer for CV in the low T limit (β∆ ≫ 1, where
β = 1/kBT ).

The partition function is given by

Z =

N∑
n=0

(
N

n

)
en∆/kBT =

(
1 + e∆/kBT

)N
. (4.2.27)

The expected number of defects is

⟨n⟩ = − 1

∆

∂(logZ)

∂β
=

N

1 + e∆/kBT
. (4.2.28)

The free energy is
F = −kBT logZ = −NkBT log

(
1 + e∆/kBT

)
. (4.2.29)

The entropy is

S = −∂F
∂T

= NkB log
(
1 + e∆/kBT

)
− ∆N/T

1 + e−∆/kBT
. (4.2.30)

The heat capacity is

CV = T
dS

dT
=

N∆2

4kBT 2
sech2

(
∆

2kBT

)
. (4.2.31)

The total number of configurations with n defects is Wn =
(
N
n

)
, so the entropy of a state with

n defects is

S = kB log

(
N

n

)
≈ Nkb logN − nkB log n− (N − n)kB log(N − n). (4.2.32)
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in the large N limit. Substituting (4.2.28), we find

S =
NkB

1 + e∆/kBT
log
(
1 + e∆/kBT

)
+
NkBe

∆/kBT

1 + e∆/kBT
log
(
1 + e−∆/kBT

)
= NkB log

(
1 + e∆/kBT

)
− ∆N/T

1 + e−∆/kBT
,

(4.2.33)

which agrees with the result obtained from the partition function.

At very low temperatures, we have n = Ne−β∆, and so the energy will be U = N∆e−β∆. Then
the specific heat will be dU

dT = NkB(β∆)2e−β∆. Indeed, in the low temperature limit of (4.2.31),
we have

CV = NkB(β∆)2e−β∆. (4.2.34)

What about gases? In principle we should be able to derive everything about the ideal gas by
modeling it as a collection of N identical noninteracting particles in a volume V . We can get away
with working in the microcanonical ensemble in this case, so we fix the total energy at U . Then the
momenta of the particles satisfy

∑
p2 = 2mU , which specifies a sphere of radius

√
2mU embedded

in 3N -dimensional space. Just in case you ever find yourself with a gun to your head and asked to
write down the volume of hyperspheres in N dimensions, you can do it by integrating Gaussians
in both Cartesian and spherical coordinates:

ˆ
Rd

e−r
2
ddx = πd/2, (4.2.35)

ˆ
Rd

e−r
2
ddx = vol

(
Sd−1

) ˆ ∞

0
rd−1e−r

2
dr =

Γ(d/2)

2
vol
(
Sd−1

)
. (4.2.36)

This shows that vol(Sd−1) = 2πd/2

Γ(d/2) . This means the volume available in momentum phase space is
(2mU)(3N−1)/d 2π3N/2

Γ(3N/2) . Multiplying by the volume factor, we have

S = kB log Ω = kB log

(
V N (2mU)(3N−1)/2 2π3N/2

Γ(3N/2)

)
. (4.2.37)

In the large N limit, this becomes

S = NkB log

(
V

(
4πmU

3N

)3/2
)
. (4.2.38)

We can now extract some basic results of thermodynamics for an ideal gas. We have

1

T
=
∂S

∂U
=

3NkB
2U

, (4.2.39)

so the energy is 3
2NkBT . To derive the equation of state, we evaluate

p

T
=
∂S

∂V
=
NkB
V

, (4.2.40)

so indeed pV = NkBT . We can also learn some things that aren’t so obvious from thermodynamics.
Perhaps most famously, we can work out the momentum distribution for a single particle. If we fix
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the momentum of one particle at p, then the other 3N −1 components should have energy U − p2

2m .
The residual entropy is

S′ = kB log

(
V N (2mU − p2)(3N−4)/2 2π(3N−4)/2

Γ(3(N − 1)/2)

)
, (4.2.41)

and the probability is

P (p) = e(S
′−S)/kB (4.2.42)

=
1

(2πmU)3/2

(
2mU − p2

2mU

)(3N−4)/2
Γ(3N/2)

Γ(3(N − 1)/2)
(4.2.43)

=
1

(3πmUN)3/2

(
1− p2

2mU

)(3N−4)/2

, (4.2.44)

where we have used the large N limit to compute the ratio of the Γ functions. Now, using U =
3
2NkBT and once again invoking large N , we find

P (p) =

(
1

2πmkBT

)3/2

exp

(
− p2

2mkBT

)
. (4.2.45)

This is the Maxwell-Boltzmann distribution, and using it we can work out just about anything
about the kinematics of ideal gas particles.

Problem 4.10 (J15T3)
Consider a classical ideal gas of identical non-interacting particles of mass m in a container of
volume V at initial temperature Ti. Let the particles have spin one-half and magnetic moment
µ, and let the container be placed in a strong magnetic field H.

a) Compute the classical partition function for this system, taking proper account of particle
identity. It may help you to know that the partition function for a single classical particle
(ignoring the spin degree of freedom) is Z1 = nQV where nQ = (mkT/2πℏ2)3/2.

b) Calculate the total energy and entropy for this system.

c) Now suppose that the container is thermally isolated and that the magnetic field is slowly
reduced (i.e. adiabatically). Show that the temperature decreases continuously as H is
decreased.

d) Show that if H is reduced all the way to zero the final temperature satisfies the inequality
Ti > Tf > 2−2/3Ti.

From quantum mechanics, we know that the two spin eigenstates will have energies ±µH
2 ; since

we are working classically, we will treat these eigenstates as the only states. The partition
function is then

Z =
1

N !

(
2nQV cosh

(
µH

2kBT

))N
, (4.2.46)
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where the factor of 1
N ! accounts for the particles being identical.

The energy is
U = −∂(logZ)

∂β
=

3

2
NkBT − NµH

2
tanh

(
µH

2kBT

)
. (4.2.47)

The entropy is

S = −∂F
∂T

= kB logZ + kBT
∂(logZ)

∂T

= NkB log

(
2nQV

N
cosh

(
µH

2kBT

))
+

3

2
NkB − NµH

2T
tanh

(
µH

2kBT

)
.

(4.2.48)

To understand adiabatic demagnetization, we need to compute
(
∂T
∂H

)
S
. Expressing this as(

∂T

∂H

)
S

= −
(
∂S
∂H

)
T(

∂S
∂T

)
H

, (4.2.49)

we can grind through derivatives and find(
∂T

∂H

)
S

=
µ2TH

3k2BT
2 + µ2H2 + 3k2BT

2 cosh
(
µH
kBT

) . (4.2.50)

That’s fugly. Put it in the burn book. But it is continuous as H → 0, so the temperature
decreases continuously.

Setting the entropies at (H,Ti) and (0, Tf ) equal, we find

Tf
Ti

= exp

(
−2

3
x tanhx

)
cosh2/3 (x) =

(
e−x(1+tanhx) + ex(1−tanhx)

2

)2/3

, (4.2.51)

where x = µH
2kBTi

. At x = 0 we have Tf = Ti, and as x → ∞, tanhx → 1 and so we have
Tf → 2−2/3Ti. It should be relatively straightforward to show that Tf

Ti
decreases monotonically,

so 1 and 2−2/3 are in fact its upper and lower bounds for x ≥ 0.

4.3 Applications to Classical Physics

As it turns out, a whole lot of systems contain more than 65,536 particles, so statistical physics
comes up a lot. Some of these applications involve tools other than the canonical ensemble, but
not substantially different.

We begin with one of these slightly different tools, the grand canonical ensemble. Contrary to
popular belief, this is not a group of string instrumentalists who play for the Pope, but rather a
generalization of the canonical ensemble for systems with a variable number of particles. Much like
the canonical ensemble, we think of our system as being coupled to a large reservoir, but now the
system and reservoir can exchange both heat and particles. The probability for a microstate of the
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system is determined by the decrease in entropy of the reservoir:

p ∝ exp (dS/kB) = exp

(
µN − E

kBT

)
. (4.3.1)

The normalization factor is the grand partition function,

Z =
∑

exp

(
µN − E

kBT

)
. (4.3.2)

We can use this to obtain expectation values; for example,

⟨N⟩ = 1

β

∂(logZ)

∂µ
. (4.3.3)

We can compute the grand partition function in terms of the regular partition function by rewriting
the sum:

Z =

∞∑
N=0

eβµNZ(N,T ). (4.3.4)

In the thermodynamic limit, fluctuations around ⟨N⟩ are relatively small, so we can focus on the
term N = ⟨N⟩ in the sum, and find

− kBT logZ = F − µN = U − TS − µN. (4.3.5)

We define the grand potential
G = U − TS − µN, (4.3.6)

so that
G = −kBT logZ (4.3.7)

in analogy to the relation between Z and F . All these fancy letters, so grand.

Problem 4.11 (J99T1)
Suppose a new kind of particle is discovered. This particle is known as the weirdon since it obeys
weird statistics in which a given state may contain 0, 1, or 2 particles. Furthermore, weirdons
are one dimensional and we will be considering a gas of non-interacting weirdons confined to a
straight line of length L. The weirdons are weakly coupled to a thermal reservoir at temperature
τ and the weirdon mass is m.

a) Suppose the chemical potential of the weirdons is µ. What is the occupancy of a state
with energy ϵ? In addition, give numerical values of the occupancy for (µ − ϵ)/τ = −∞,
(µ− ϵ)/τ = 0, and (µ− ϵ)/τ = +∞.

b) What is the density of states? (That is, the number of states per unit energy as a function of
energy?) Remember, the weirdons are one dimensional and are confined to a “box” of length
L.

c) Suppose the weirdon gas is cold (τ → 0) and contains N weirdons. What is the chemical
potential?
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d) Under the same conditions as part c), what is the total energy of the weirdon gas? Be sure
to eliminate µ from your expression.

e) The low temperature heat capacity of the weirdon gas is proportional to the temperature to
some power, C ∝ τα. What is α?

Let’s imagine the state with energy ϵ is the sole state. Then we have three microstates, and the
grand partition function is

Z = 1 + eβ(µ−ϵ) + e2β(µ−ϵ). (4.3.8)

The occupancy is

⟨N⟩ = 1

β

∂(logZ)

∂µ
=

eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
. (4.3.9)

For β(µ− ϵ) = −∞, we have ⟨N⟩ = 0. For β(µ− ϵ) = 0, we have ⟨N⟩ = 1. For β(µ− ϵ) = +∞,
we have ⟨N⟩ = 2.

Since the weirdons are particles in a box, their energy levels are

ϵn =
π2ℏ2n2

2mL2
. (4.3.10)

The density of states is

g(ϵ) =
dn

dϵ
=

L

2πℏ

√
2m

ϵ
. (4.3.11)

The number of weirdons can be approximated as

N =

ˆ ∞

0
dϵ g(ϵ)

eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
. (4.3.12)

As β → ∞, the occupation number will be 0 for ϵ > µ and 2 for ϵ < µ. Thus, we have

N = 2

ˆ µ

0
dϵ g(ϵ) =

2L

πℏ
√

2mµ. (4.3.13)

Solving for the chemical potential, we have

µ =
N2π2ℏ2

8mL2
. (4.3.14)

The total energy is given by

U = 2

ˆ µ

0
dϵ ϵg(ϵ) =

2L

3πℏ
√
2mµ3 =

Nµ

3
=
N3π2ℏ2

24mL2
. (4.3.15)

To find the low temperature heat capacity, we write the energy in all its glory,

U =

ˆ ∞

0
dϵ ϵg(ϵ)

eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
. (4.3.16)
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One could take a derivative, in the same way that one could slap oneself across the face. Whatever
floats your boat. However, it will be quicker to develop an expansion in β−1 and look for the
lowest non-constant term. We already know the constant term, so the rest is

U −U(β = ∞) =

ˆ µ

0
dϵ ϵg(ϵ)

(
eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
− 2

)
+

ˆ ∞

µ
dϵ ϵg(ϵ)

eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
.

(4.3.17)
Some convenient simplification of the first term gives

U − U(β = ∞) = −
ˆ µ

0
dϵ ϵg(ϵ)

e−β(µ−ϵ) + 2e−2β(µ−ϵ)

1 + e−β(µ−ϵ) + e−2β(µ−ϵ) +

ˆ ∞

µ
dϵ ϵg(ϵ)

eβ(µ−ϵ) + 2e2β(µ−ϵ)

1 + eβ(µ−ϵ) + e2β(µ−ϵ)
.

(4.3.18)
These integrals look very similar, and we can make them moreso. We extend the domain of the
first integral to −∞ by setting g(ϵ < 0) = 0, and then make the change of variables x = ±β(µ−ϵ)
(different signs in the two integrals), so

U − U(β = ∞) = −β−1

ˆ 0

−∞
dx
(
µ+ β−1x

)
g
(
µ+ β−1x

) ex + 2e2x

1 + ex + e2x

+ β−1

ˆ 0

−∞
dx
(
µ− β−1x

)
g
(
µ− β−1x

) ex + 2e2x

1 + ex + e2x
.

(4.3.19)

We can then add the integrals. Both integrals are sharply peaked near x = 0, so we can write
the difference as a derivative and find

U = U(β = ∞) + β−2

(
d

dϵ
(ϵg(ϵ))

)
ϵ=µ

ˆ 0

−∞
dx

ex + 2e2x

1 + ex + e2x
. (4.3.20)

We could stop here: the integral is just a number, so the leading order correction to the energy
is order T 2, meaning C ∝ T for small T . But we might as well finish off, since the integral is
pretty trivial to evaluate:

ˆ 0

−∞
dx

ex + 2e2x

1 + ex + e2x
=

ˆ 0

−∞

d

dx

(
log
(
1 + ex + e2x

))
dx = log 3. (4.3.21)

Thus, we have

C =

(
2k2B log 3

π2ℏ2
mL2

N

)
T +O(T 2). (4.3.22)

Problem 4.12 (J01T2)
Imagine a solution of three types of biomolecules. Type A and type C molecules can form a
bound system with energy −ϵAC (ϵAC > 0) relative to ϵ = 0 when they are unbound. Similarly,
type B and type C molecules bind with energy −ϵBC . Only one A or B molecule can bind to
a C molecule at a time. Further, ϵAC and ϵBC are substantially larger than the energies with
which other molecules might be bound at the same place on the type C molecule. The solution
is an infinite reservoir of A and B molecules as far as the C molecules are concerned.

a) Determine the grand partition function for this system. Also determine the fractions fA and



186 CHAPTER 4. STATISTICAL MECHANICS

fB of C molecules which have bound an A or a B molecule. You may introduce the chemical
potentials, µA and µB, of A and B molecules.

b) The concentration nA of A molecules is sufficiently high that in the absence of B molecules,
essentially every C molecule binds an A molecule. Obtain an expression for fA that depends
only on the concentrations nA, nB, the energies ϵAC and ϵBC , and the temperature T the
solution.

c) As already remarked, in the absence of B molecules, fA is close to 1. However, when the
concentration nB of B molecules in solution reaches 1% that of the A molecules in solution,
it is observed that fA drops to 0.1. What is the numerical value of (ϵBC − ϵAC)/kT? Make
a rough estimate of ϵBC − ϵAC in electron volts if T = 300K.

The grand partition function is

Z =

N∑
nA,nB=0

N !

nA!nB! (N − nA − nB)!
exp (β (nA(µA + ϵAC) + nB(µB + ϵBC)))

=
(
1 + eβ(µA+ϵAC) + eβ(µB+ϵBC)

)N
,

(4.3.23)

where N is the number of C molecules. The bound fractions are

fA =
⟨nA⟩
N

=
1

Nβ

∂(logZ)

∂µA
=

eβ(µA+ϵAC)

1 + eβ(µA+ϵAC) + eβ(µB+ϵBC)
, (4.3.24)

fB =
⟨nB⟩
N

=
1

Nβ

∂(logZ)

∂µB
=

eβ(µB+ϵBC)

1 + eβ(µA+ϵAC) + eβ(µB+ϵBC)
. (4.3.25)

We are given that when B molecules are absent (µB → ∞), fA → 1. This means eβ(µA+ϵAC) ≫ 1.
We can thus ignore the 1 in the denominator, and so we have

fA =
1

1 + eβ(µB−µA+ϵBC−ϵAC)
. (4.3.26)

In the classical limit, the concentrations are nA ∝ eβµA and nB ∝ eβµB , so

fA =
1

1 + nB
nA
eβ(ϵBC−ϵAC)

. (4.3.27)

The given condition is

0.1 =
1

1 + 0.01eβ(ϵAC−ϵBC)
=⇒ eβ(ϵBC−ϵAC) = 900. (4.3.28)

This gives ϵBC − ϵAC = 0.18 eV at 300K.
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Problem 4.13 (J03T2)
Krypton atoms are rather heavy and reasonably polarizable. The potential between two krypton
atoms is shown in the figure

−E0

r0

∆r0

In the limit in which the mass of the Kr atom is very large, there will at low energies and
temperatures be an equilibrium of the form

Kr + Kr ↔ Kr2 (4.3.29)

a) The classical partition function of two krypton atoms inside a volume V can be written as

Z2 =

(
1 +

K

V

)
Z id
2 (4.3.30)

where Z id
2 is the partition sum of two free atoms. How is the constant K related to the

probability that the two atoms form a molecule? Find an approximate expression for K
in terms of the reaction energy E0, the size r0 of the molecule, and the width ∆r0 of the
potential.

b) Show that the partition function ZN for N krypton atoms inside a volume V can similarly
be written as a sum of contributions coming from M Kr2 molecules and N − 2m unbound
free Kr atoms given by

ZN,M = d(M,N)

(
K

V

)M
Z id
N (4.3.31)

where Z id
N is the ideal gas partition sum, d(M,N) is the number of ways M molecules can

be formed out of N atoms, and K is the same quantity found in part a). Determine the
combinatorial factor d(M,N).

c) Derive the equilibrium condition
cKr2 = K[cKr]

2 (4.3.32)

where cKr2 is the concentration of the Kr2 molecules and cKr the concentration of the unbound
Kr atoms. You may use Stirling’s formula N ! ∼

(
N
e

)N .
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The classical partition function will be the sum of Z id
2 and the piece corresponding to molecule

states. The number of states of two krypton atoms is proportional to V 2, while the number of
states of the molecule is proportional to V multiplied by the volume which can be occupied by
the second krypton atom relative to the first; this is approximately 4πr20∆r. Thus,

K = 4πr20∆re
βE0 . (4.3.33)

The probability of the two atoms forming a molecule is

P =
K
V Z

id
2(

1 + K
V

)
Z id
2

=
K

K + V
. (4.3.34)

Every time we bind two atoms into a molecule, the phase space available is reduced by a factor
K
V and the energy decreases by E0. This justifies the given form of ZN,M . By elementary
combinatorics, we have

d(M,N) =

(
N

2M

)
(2M)!

2M ·M !
=

N !

2M ·M !(N − 2M)!
. (4.3.35)

The total partition function is

ZN = Z id
N

N/2∑
M=0

N !

2M (N − 2M)!

(
K

V

)M
. (4.3.36)

This gives a free energy

FN = F id
N − kBT log

 N/2∑
M=0

N !

2M ·M !(N − 2M)!

(
K

V

)M . (4.3.37)

In the thermodynamic limit, the sum will be dominated by the term corresponding to the
expected number M of molecules which minimizes free energy. Thus,

0 =
d

dM
log

(
N !

2M ·M !(N − 2M)!

(
K

V

)M)
≈ log

K

2V
+ 2 log(N − 2M)− logM. (4.3.38)

This gives (N−2M)2

M = 2V
K , or

cKr2 =
M

V
=
K

2

(N − 2M)2

V 2
=
K

2
[cKr]

2. (4.3.39)

Hmm…close. I think this is right, actually. Also, 2 = 1, so it doesn’t matter.

Now for something entirely unrelated: the equipartition theorem. We showed in the previous
section that the internal energy of a monatomic ideal gas is U = 3

2NkBT . The factor of 3
2 comes

from the assumption of monatomicity, and if the molecules in the gas have additional degrees of
freedom beyond translation, the overall factor will change. The equipartition theorem will give a
way to understand this without needing to compute the entropy directly.
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Let’s assume the energy of the system has a piece which depends quadratically on some continuous
variable x1; i.e.,

E = ax21 + f(x2, x3, . . .). (4.3.40)

Furthermore, let’s assume the system is connected to a heat bath at temperature T , so we can use
the canonical ensemble. To find the expectation of the energy in the x1 degree of freedom, we use
the partition function to write

⟨
ax21
⟩
= − ∂

∂β

(
log
∑

e−βE
)
= − ∂

∂β

(
log

ˆ
dx1 e

−βax21
)
, (4.3.41)

where we have used the form of the energy to factor out the piece not depending on x1. The integral
is easily evaluated, and we find ⟨

ax21
⟩
=

1

2β
=
kBT

2
. (4.3.42)

This is the equipartition theorem: for a system in equilibrium with a heat bath at temperature T ,
every quadratic degree of freedom contributes 1

2kBT to the energy. This immediately reproduces
the internal energy of the monatomic ideal gas. Furthermore, if we have a diatomic gas, there are
two additional rotational degrees of freedom, so U = 5

2NkBT .

Problem 4.14 (J14T1)
Consider a liquid placed in a very wide container that is in thermal equilibrium at temperature
T with its surroundings. Let z(r) be the height of the liquid at point r = (x, y) defined such
that the equilibrium height in absence of thermal fluctuations is z(r) = 0. For small deviations
around the equilibrium, the potential energy is approximately

Epot ≈ E0 +
1

2

ˆ
dx dy

[
σ

(
dz

dx

)2

+ σ

(
dz

dy

)2

+ ρgz2

]
, (4.3.43)

where E0 is a constant, σ is the surface tension, ρ is the difference between the density of the
liquid and that of the gas, and g is the gravitational acceleration.

a) For a periodic box of side length L, express the potential energy Epot in terms of the Fourier
coefficients A(k) defined by

z(r) =
1

L

∑
k

eik·rA(k), (4.3.44)

where A(−k) = A(k)∗ and k = (kx, ky) =
2π
L (nx, ny) (with nx and ny integers).

b) Due to thermal fluctuations, ⟨
|A(k)|2

⟩
=

1

ak2 + b
, (4.3.45)

as long as |k| is below a certain cutoff. What are the values of a and b at temperature T , in
terms of the model’s parameters (σ, ρ, T, L)?

c) Find an approximate expression for the r.m.s. width W =
√
⟨z(r)2⟩, for wide containers, in

terms of a, b, and the maximal value kmax of |k|. Assume also that k2max ≫ b/a.

d) What determines kmax?
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Substituting (4.3.44) into the potential energy, we find

Epot ≈ E0 +
1

2

∑
k

(
σk2 + ρg

)
|A(k|2. (4.3.46)

By the equipartition theorem, we have⟨
|A(k)|2

⟩
=

kBT

σk2 + ρg
, (4.3.47)

so a = σ
kBT

and b = ρg
kBT

.

The rms width will be

W =
√

⟨z(r)2⟩ = 1

L

(∑
k

⟨
|A(k)|2

⟩)1/2

. (4.3.48)

Substituting the mean fluctuations, and approximating the sum by an integral, we find

W ≈
(

1

2π

ˆ kmax

0

k dk

ak2 + b

)1/2

=

√
1

4πa
log
(
1 +

a

b
k2max

)
. (4.3.49)

Since we are assuming kmax ≫ b/a, the 1 in the logarithm is negligible.

The ultraviolet cutoff kmax will be determined by the length scale at which the water is no longer
well-approximated by a continuum theory. This will be controlled by the atomic separation scale,
so kmax should be on the order of inverse nanometers.

So much for equilibrium. What about systems out of equilibrium? For example, a sphere moving
with some steady velocity v through water is clearly not in equilibrium, because its kinetic energy
is much larger than the value prescribed by the equipartition theorem. Similarly, a sphere which is
completely stationary in some water is not in equilibrium, because its kinetic energy is too low.

Both systems will equilibrate by the same means: interactions with water molecules. In the first
case, collisions with water molecules will tend to slow down the sphere. In the second case, the
same collisions will haphazardly accelerate the sphere in different directions, causing its velocity to
fluctuate about its mean value of zero.

Macroscopically, however, these two processes look very different. We would describe the first
process as dissipation: the useful mechanical energy of the sphere is dissipated into the heat of the
water. The second process is fluctuation: a stationary sphere jostles about randomly. Since both of
these macroscopic processes have the same microscopic origin, they are related. This is the content
of the fluctuation-dissipation theorem.

To understand this relationship, suppose we have a particle of mass m which feels a drag force with
coefficient γ, and also a stochastic force R(t) due to thermal fluctuations:

mẍ = −γẋ+R(t). (4.3.50)
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Figure 4.6

We can solve this equation via a Green’s function:

ẋ(t) = ẋ(0)e−γt/m +
1

m

ˆ t

−∞
R(s)e−γ(t−s)/m ds. (4.3.51)

From the equipartition theorem, we know that ⟨ẋ(t)2⟩ = kBT
m . Equilibrium will be achieved at late

times, so
kBT

m
=

1

m2

ˆ ∞

−∞
ds1

ˆ ∞

−∞
ds2 ⟨R(s1)R(s2)⟩e−

γ
m
(2t−s1−s2). (4.3.52)

We can simplify this by making the assumption that the statistics of the thermal fluctuations have
time translation invariance, so ⟨R(s1)R(s2)⟩ = ⟨R(0)R(s2 − s1)⟩. We can then define a = t − s1
and b = s2 − s1, and the integral becomes

kBT

m
=

1

m2

ˆ ∞

0
da

ˆ ∞

−∞
db ⟨R(0)R(b)⟩e−

γ
m
(2a−b) =

1

2γm

ˆ ∞

−∞
db ⟨R(0)R(b)⟩e

γb
m . (4.3.53)

We make the additional assumption that ⟨R(0)R(b)⟩ is only supported in a small interval around
b = 0; if the stochastic force were correlated on large time scales, it wouldn’t be the kind of random
thermal force we’re looking for. We can then ignore the exponential in the integrand, and we find

2γkBT =

ˆ
dτ⟨R(0)R(τ)⟩. (4.3.54)

This is the fluctuation-dissipation theorem: on the left we have the coefficient which controls the
rate of energy dissipation, and on the right we have a quantity which measures the extent of thermal
fluctuations.

Problem 4.15 (M00T2)
A solid spherical particle of radius b and mass M is suspended in a fluid, and is seen, using an
optical microscope, to undergo Brownian motion. You are asked to show that a measurement of
the mean-square displacement ⟨|r(t1)−r(t2)|2⟩ can be used to determine Boltzmann’s constant.
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Assume the densities of the solid and fluid are identical, so buoyancy can be ignored. The cause
of the Brownian motion is a rapidly fluctuating force due to collisions with the molecules of the
fluid. The force has mean zero, ⟨F (t)⟩ = 0, and two-time correlation of the form

⟨F (t) · F (t′)⟩ = Cδ(t− t′). (4.3.55)

The fluid has viscosity η and the system is isothermal at temperature T . The equation of motion
of the particle is

M
d2r

dt2
+ 6πbη

dr

dt
= F (t). (4.3.56)

a) Express the velocity at time t as an integral involving the past forces, {F (t′)}t′<t.

b) Find the coefficient C of the force-correlation at temperature T , as a function of T and the
other constants mentioned above.

c) Describe the rate of growth of the mean square displacement ⟨|r(t1) − r(t2)|2⟩, and explain
how its measurement can be used to determine Boltzmann’s constant kB.

The velocity can be expressed in terms of the Green’s function,

ṙ(t) =
1

M

ˆ t

−∞
e−

6πbη
M

(t−t′)F (t′) dt′. (4.3.57)

By the fluctuation-dissipation theorem, we have

C = 12πbηkBT. (4.3.58)

Man, I love hitting small nails with big hammers.

To find the mean square displacement, we integrate the velocity to find

r(t)− r(0) =
1

M

ˆ t

0
ds

ˆ s

−∞
e−

6πbη
M

(s−r)F (r) dr. (4.3.59)

Thus,

⟨|r(t)− r(0)|2⟩ = 1

M2

ˆ t

0
ds1

ˆ t

0
ds2

ˆ s1

−∞
dr1

ˆ s2

−∞
dr2 e

− 6πbη
M

(s1+s2−r1−r2)⟨F (r1) · F (r2)⟩.

(4.3.60)
Thankfully the autocorrelation is as simple as it gets in this case, so this reduces down to

⟨|r(t)− r(0)|2⟩ = 12πbηkBT

M2

ˆ t

0
ds1

ˆ t

0
ds2

ˆ min(s1,s2)

−∞
dr e−

6πbη
M

(s1+s2−2r). (4.3.61)

The remaining integrals are straightforward, and we find that for t≫ M
6πbη ,

⟨|r(t)− r(0)|2⟩ = kBT

6πbη
t. (4.3.62)

Thus, by measuring the average rate of increase of the mean square displacement, we can extract
kB.
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4.4 Interacting Systems

Ideal gases are easy because they consist of noninteracting particles. What happens if the particles
have some interactions? We will show here that the ideal gas equation of state is modified by
corrections at higher powers of the density, a relation called the virial expansion. Furthermore,
by computing the lowest-order correction term in this expansion, we will derive the van der Waals
equation of state.

We start by computing the correction to the partition function due to a potential term in the
Hamiltonian. The partition function will have an additional factor of e−βV in the integrand, where
V is the potential energy, so we can write it as

Z = Z0

⟨
e−βV

⟩
0
, (4.4.1)

where Z0 is the noninteracting partition function and ⟨·⟩0 denotes the expectation value with respect
to the noninteracting distribution. The free energy is then

F = F0 − kBT log
⟨
e−βV

⟩
0
. (4.4.2)

We can expand the second term as a power series in β. The coefficients of this expansion are known
in statistics as the cumulants of the random variable V. We denote the nth cumulant by κn(V), so

F = F0 − β−1
∞∑
n=1

(−β)n

n!
κn(V). (4.4.3)

The first two cumulants are

κ1(V) = ⟨V⟩, κ2(V) = ⟨V2⟩ − ⟨V⟩2. (4.4.4)

We now assume the potential is a sum of identical pairwise interactions,

V =
∑
i<j

V(xi − xj). (4.4.5)

For the noninteracting gas, all the xi are uniformly distributed over a volume V , so

κ1(V) =
∑
i<j

ˆ
dxi dxj
V 2

V(xi − xj) =
N(N − 1)

2V

ˆ
dxV(x). (4.4.6)

For the second cumulant, we have

κ2(V) =
∑

i<j,k<l

(⟨V(xi − xj)V(xk − xl)⟩ − ⟨V(xi − xj)⟩⟨V(xk − xl)⟩) . (4.4.7)

There are several simplifications to be made here. If the four indices are all different, then V(xi−xj)
and V(xk −xl) are independent random variables and so the first term factors, and so these terms
all vanish. Similarly, if only one index is shared, one can show that the term vanishes. Thus, we
have

κ2(V) =
N(N − 1)

2V

(ˆ
dxV(x)2 − 1

V

(ˆ
dxV(x)

)2
)
. (4.4.8)
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As long as the range of the potential is much less than the total volume, we can ignore the second
term.

Similar simplifications occur at all orders. In general, the contributions to this expansion can be
written as one-particle irreducible diagrams, much like Feynman diagrams, but here we are only
interested in contributions at order N2. By analogy to κ2 we have

κp(V ) =
N(N − 1)

2V

ˆ
dxV(x)p +O

(
N3

V 2

)
. (4.4.9)

Thus,

F = F0 −
N(N − 1)

2βV

∞∑
p=1

(−β)p

p!

ˆ
dxV(x)p +O

(
N3

V 2

)
. (4.4.10)

The sum is just an exponential, and so we find

F = F0 −
N2

2βV

ˆ
dx (exp(−βV)− 1) +O

(
N3

V 2

)
. (4.4.11)

Our last job is to compute the integral. This is where the van der Waals point comes in: we assume
the potential is a van der Waals attraction at large distances, V(r) ∼ r−6. At short distances
we want strong repulsion. This is sometimes modeled using a Lennard-Jones potential, but that
sounds hard, so instead we use

V(r) =

{
−u0(r0/r)6 r > r0,

∞ r < r0
. (4.4.12)

The parameter r0 sets the size of the particles (the particle radius is r0/2), and u0 sets the strength
of their interactions. Integrating, we find

ˆ
dx (exp(−βV)− 1) = −4πr30

3
(1− βu0) . (4.4.13)

Substituting this, we have

F = F0 −
N2

βV

2πr30
3

(1− βu0) +O
(
N3

V 2

)
. (4.4.14)

At last we are ready to compute the equation of state. Taking the derivative with respect to volume,
we find

p =
NkBT

V

(
1 +

N

V

2πr30
3

(1− βu0)

)
. (4.4.15)

Rearranging, we find(
p+

N2

V 2

2πr30
3

u0

)
=
NkBT

V

(
1 +

N

V

2πr30
3

)
≈ NkBT

V

(
1− N

V

2πr30
3

)−1

, (4.4.16)

where we have assumed that the total volume occupied by gas particles is much less than V . Finally
we find (

p+
aN2

V 2

)
(V −Nb) = NkBT , (4.4.17)

where b = 2πr30
3 and a = u0b. This is the van der Waals equation of state.
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Problem 4.16 (M08T2)
The van der Waals equation of state is

P =
NkBT

V −Nb
− a

N2

V 2
(4.4.18)

for the pressure P of a fluid N interacting atoms in a volume V at temperature T . This models
the liquid-gas phase transition and its critical point.

a) Briefly explain the physics of each of the two above corrections to the ideal gas equation of
state (corresponding to the parameters b and a).

b) Calculate the parameters at the critical point: the critical pressure Pc, critical temperature
Tc, and the critical density nc = (N/V )c.

As we have seen, b measures the volume of the gas particles and a measures the strength of their
interactions.

The critical point lies on the boundary of the unstable region of the van der Waals gas. When
a gas is overpressured, it should expand until its pressure is low enough; this requires(

∂p

∂V

)
T

< 0. (4.4.19)

The van der Waals gas behaves like an ideal gas at large volumes and pressures, but there is a
region at small volumes and pressures where this condition is violated. Its boundary is given by
the solutions to

(
∂p
∂V

)
T
= 0, or

− NkBT

(V −Nb)2
+

2aN2

V 3
= 0. (4.4.20)

For most values of T there will be two solutions; for the critical temperature there is only one
solution. In the case of a double root, the second derivative also vanishes, so

2NkBT

(V −Nb)3
− 6aN2

V 4
= 0. (4.4.21)

Combining these, we find

6aN2(V −Nb)

V 4
=

4aN2

V 3
=⇒ Vc = 3Nb. (4.4.22)

Put another way, (nc) = 1
3b . Using the other equations we find

Tc =
8

27

a

bkB
, pc =

a

27b2
. (4.4.23)
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Another way to deal with interactions is to make the zeroth-order approximation that the inter-
action Hamiltonian can be replaced by a coupling to an external field, where the strength of the
external field is determined by a self-consistency condition. This is called the mean field approxi-
mation. It is best illustrated by example.

Problem 4.17 (M07T3)
The Ising model on a 3-dimensional square lattice with spin-1/2 particles is defined by the
Hamiltonian

H = −J
∑
i,j

σiσj −B
∑
i

σi (4.4.24)

where J > 0, i labels sites of the 3-dimensional lattice, j runs over nearest neighbor sites in 3
dimensions and σi is equal to +1 or −1.

The Ising model is often solved using the mean field approximation, consisting of replacing the
spin interaction Hamiltonian by the mean field interaction

Hm = −M
∑
i

σi −B
∑
i

σi (4.4.25)

where M is a parameter fixed by the self-consistency condition to be M = 6J⟨σi⟩.

a) For the Hamiltonian Hm calculate the free energy, entropy, and ⟨σi⟩ at temperature T .

b) Show that for B = 0 at low temperature a self-consistent solution with ⟨σi⟩ ̸= 0 has a lower
free energy than a solution with ⟨σi⟩ = 0.

c) Find the critical temperature Tc above which the spontaneous magnetization vanishes at zero
external field B.

d) How can one build a refrigerator using the spins as the working substance? Describe qualita-
tively how one can efficiently cool a substance by manipulating the spin degrees of freedom
which obey this mean field theory.

The partition function is given by

Z =

N∑
n=0

(
N

n

)
eβ(M +B) · (2n−N) = e−βN(M+B)

(
1 + e2β(M+B)

)N
, (4.4.26)

so the free energy is
F = N(M +B)−NkBT log

(
1 + e2β(M+B)

)
. (4.4.27)

The entropy is
S = −∂F

∂T
= NkB log

(
1 + e2β(M+B)

)
− 2N(M +B)/T

1 + e−2β(M+B)
. (4.4.28)

The average spin is

⟨σi⟩ = −1 +
1

N(M +B)

∂(logZ)

∂β
= tanh(β(M +B)). (4.4.29)
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The self-consistency condition thus requires

M = 6J tanh(β(M +B)). (4.4.30)

At B = 0, we have

F = NM −NkBT log
(
1 + e2βM

)
= 6JN⟨σi⟩ −NkBT log

(
1 + e12βJ⟨σi⟩

)
. (4.4.31)

Taking a derivative, we find

dF

d(⟨σi⟩)
= 6JN − 12JN

1 + e−12βJ⟨σi⟩
. (4.4.32)

Evaluating at ⟨σi⟩ = 0 gives 0. Taking another derivative we have

d2F

d(⟨σi⟩)2

∣∣∣∣
⟨σi⟩=0

= −36βJ2N, (4.4.33)

so indeed ⟨σi⟩ = 0 is a local maximum of free energy and the system will tend to magnetize,
provided a self-consistent nonzero magnetization M exists.

In order to have a solution to (4.4.30) for B = 0 and M ̸= 0, we need

6Jβ > 1 =⇒ T < Tc ≡
6J

kB
. (4.4.34)

We could build a weirdass refrigerator out of this system by taking advantage of the critical
temperature. We start with the spins magnetized, and transfer heat from some other system to
the spins until they reach Tc and demagnetize. Then we thermally isolate the spins and turn
on an external field to magnetize the spins again, and repeat the cycle. This allows us to cool a
system to Tc, but no more.

Problem 4.18 (M12T3)
Consider a classical one-dimensional magnet with Hamiltonian

H = −J
N∑
i=1

Si · Si+1, (4.4.35)

where each Si is a classical (3-component) vector spin of fixed length S.

a) Calculate ⟨Si · Si+1⟩ at equilibrium at temperature T .

b) Calculate the specific heat per spin c(T ) of this system in the limit N → ∞.

c) Consider the T → 0 limit of part b). Is this consistent with the behavior of c(T ) for a quantum
ferromagnet (J > 0) of spin S with this same Hamiltonian? If not, estimate (roughly)
and state the correct quantum behavior of c(T ) for small T , explaining your reasoning.
Ferromagnetic spin waves in this model have a frequency that depends on wavenumber k as
ω(k) ∼ k2 for small k.
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We may treat all the inner products Si · Si+1 as independent degrees of freedom. The partition
function for a single one of these degrees of freedom is

Z1 =

ˆ 1

−1
d(cos θ) eβJS

2 cos θ =
2 sinh(βJS2)

βJS2
. (4.4.36)

It follows that
⟨Si · Si+1⟩ =

1

J

∂(logZ)

∂β
= S2 coth(βJS2)− 1

βJ
. (4.4.37)

The entropy is

S = kB

(
1 + log

(
2kBT

JS2
sinh

JS2

kBT

))
− JS2

T
coth

(
JS2

kBT

)
, (4.4.38)

so
c(T ) = T

∂S

∂T
= kB − J2S4

kBT 2
csch2

(
JS2

kBT

)
. (4.4.39)

As T → 0, we have c(T ) → kB for the classical system. For a quantum ferromagnet, there is
some minimum excitation energy which will be frozen out at low enough temperatures, and so
c(T ) → 0.

Problem 4.19 (J12T2)
Consider N classical two-state spins Si = ±1, with Hamiltonian

H = − J

N

N∑
i=1

i−1∑
j=1

SiSj − h
N∑
i

Si. (4.4.40)

This is an “infinite-range” model where all spins interact with all others: the spin-spin coupling
(J/N) is defined so the energy J remains a positive constant in the thermodynamic limit N → ∞.
You should work in this limit. The external magnetic field h can be of either sign or zero.

a) Sketch the equilibrium phase diagram of this system vs. temperature T and field h, showing
all phase transitions and critical points that occur as one varies T and/or h.

b) Calculate the critical temperature Tc.

c) At the critical temperature T = Tc, calculate the magnetization m = ⟨Si⟩ as a function of
the field h in the limit where |h| is small but nonzero.

We know there will be a critical temperature Tc above which the system is disordered at h = 0.
For h ̸= 0, the ordered phase can survive at higher temperatures. Thus, the phase diagram will
look roughly as follows.
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h

T
Tc

Ordered
Disordered

In the thermodynamic limit, the mean field approximation is exact in this case, and so we have

H = −(M + h)
N∑
i

Si, (4.4.41)

where M = J⟨Si⟩. Calculating this expectation, we find

M = J tanh(β(M + h)). (4.4.42)

At h = 0, a nonzero solution to this equation exists only if T < Tc ≡ J
kB

.

At the critical point we have

M = J tanh

(
M + h

J

)
=M + h− (M + h)3

3J2
+O((M + h)5), (4.4.43)

and solving this gives
M = (3J2h)1/3 − h. (4.4.44)

Problem 4.20 (J01T3)
Mean field treatments of ferromagnetic systems are quite useful in general, but for certain “frus-
trated” antiferromagnets this may not be the case. Consider the antiferromagnetic Ising model
on the triangular chain shown below, with Hamiltonian

H = J
∑
⟨ij⟩

sisj , (4.4.45)

where J > 0, the spins si have values ±1, and the sum runs over all nearest neighbor pairs on
the lattice (vertices joined by links in the figure).

a) Consider a system of N triangles at temperature T . Assuming that all the top row spins have
zero thermal expectation values, write down a mean field theory for the spins. What is the
transition temperature?
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b) Consider a system consisting of a single triangle at T = 0. How many ground states (minimum
energy configurations) does it have?

c) Consider a system of N triangles at T = 0. How many ground states does the chain have,
supposing free boundary conditions?

d) Calculate the correlation ⟨sisj⟩, averaged over the ground states for two spins on the bottom
row (N triangles). Is this consistent with the answer in part a)?

Since the system is antiferromagnetic, we expect the spins on the bottom row to alternate. Let
M = 2J⟨σ2i⟩ = −2J⟨σ2i+1⟩, so that

H =M
∑
i

(σ2i+1 − σ2i) . (4.4.46)

Since M = J⟨σ2i − σ2i+1⟩, self-consistency fixes

M = 2J tanh(βM), (4.4.47)

which has nonzero solutions only for T < Tc ≡ 2J
kB

.

For a single triangle, the best we can do is to have one spin up and two spins down, or vice
versa; this gives six total ground states.

For a chain of N triangles, each one will have a single pair of spins which are equal. We have
three ways of choosing this pair for each triangle, so there are 2 · 3N ground states.

We have
⟨sisj⟩ = ⟨sis2i+1 · · · s2j−1sj⟩ = ⟨sisi+1⟩ · · · ⟨sj−1sj⟩, (4.4.48)

since the different triangles are independent. Neighboring spins on the bottom row have a 2
3

chance of being different, so ⟨sisi+1⟩ = −1
3 , and hence

⟨sisj⟩ =
(
−1

3

)|i−j|
. (4.4.49)

This is not consistent with the mean field result, for which this expectation is ± tanh(βM) for
the self-consistent value of M (the sign depending on parity), independent of i and j.

4.5 Quantum Statistical Mechanics

Quantum mechanics is a probabilistic mess. So is statistical mechanics. Can you imagine what
their kids would look like? Gross.

The ugly baby looks best when dressed in density matrices. We represent a pure state (a system
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for which we know the quantum state with 100% certainty) by the outer product

ρψ = |ψ⟩ ⟨ψ| . (4.5.1)

We then represent a statistical ensemble by a weighted sum of pure states,

ρ =
∑

P (ψ) |ψ⟩ ⟨ψ| . (4.5.2)

Clearly every density matrix satisfies tr ρ = 1. To determine whether a given density matrix
represents a pure state, we can evaluate tr ρ2. We have

tr ρ2 =
∑

P (ψi)P (ψj)| ⟨ψi|ψj⟩ |2 ≤
(∑

P (ψi)
)2

= 1. (4.5.3)

Equality holds only when | ⟨ψi|ψj⟩ | = 1 for all i, j, which is clearly only possible if all the ψi are
same up to a phase, in which case the density matrix can be written as |ψ⟩ ⟨ψ|. Conversely, when
tr ρ2 < 1, ρ represents a mixed state. More generally, the expectation value of some observable A
is given by

⟨A⟩ =
∑

P (ψ) ⟨ψ|A|ψ⟩ = tr(ρA). (4.5.4)

Problem 4.21 (J05Q1)
Two spin 1/2 particles interact via the Hamiltonian

H = −JSA · SB. (4.5.5)

At time t = 0, spin A points in the positive z-direction and spin B points in the negative z-
direction. Compute the density matrix of spin A at time t. At which time does it describe a
pure state, that is, at which time does the entanglement between the two spins vanish?

The Hamiltonian can be written as

H =
J

2

(
S2
A + S2

B − (SA + SB)
2
)
=
J

2

(
3

2
− (SA + SB)

2

)
. (4.5.6)

Thus, the singlet state has energy 3J
4 and the triplet states all have energy −J

4 . The initial state
is

|↑↓⟩ = 1√
2
(|0, 0⟩+ |1, 0⟩) , (4.5.7)

so the state at time t is

|ψ(t)⟩ = 1√
2

(
e−3iJt/4ℏ |0, 0⟩+ eiJt/4ℏ |1, 0⟩

)
= e−iJt/4ℏ

(
cos

(
Jt

2ℏ

)
|↑↓⟩+ i sin

(
Jt

2ℏ

)
|↓↑⟩

)
.

(4.5.8)

The density matrix is thus

ρ = cos2
(
Jt

2ℏ

)
|↑↓⟩ ⟨↑↓| − sin2

(
Jt

2ℏ

)
|↓↑⟩ ⟨↓↑|+ i sin

(
Jt

2ℏ

)
cos

(
Jt

2ℏ

)
(− |↑↓⟩ ⟨↓↑|+ |↓↑⟩ ⟨↑↓|) .

(4.5.9)
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Tracing over the second spin, we find

ρA = cos2
(
Jt

2ℏ

)
|↑⟩ ⟨↑| − sin2

(
Jt

2ℏ

)
|↓⟩ ⟨↓| . (4.5.10)

This only describes a pure state when it is equal to either |↑⟩ ⟨↑| or |↓⟩ ⟨↓|, i.e., when

t =
nπℏ
J

, n ∈ Z. (4.5.11)

We can express the ensembles we have used classically as density matrices. The most important
example is the canonical ensemble, for which we have

ρ =

∑
e−βEn |ψn⟩ ⟨ψn|

Z
, (4.5.12)

where the partition function Z fixes tr ρ = 1. This means it is given by

Z = tr
(
e−βH

)
. (4.5.13)

Problem 4.22 (J98T3)
A sample, comprised of N independent spins (s = 1/2), sits in an external magnetic field H. Its
Hamiltonian is given by

H = −gµB
∑
n

sn ·H, (4.5.14)

where g = 2 and µB is the Bohr magneton.

a) Write down the partition function Z.

b) Calculate the sample’s entropy S(H,T ), and make a rough sketch of S versus the temperature
T for a fixed field H1. Show that S is a function of only one quantity x instead of two (T and
H). How is x related to T and H? What is the T dependence of S in the low temperature
limit?

c) The sample is initially connected to a heat bath at temperature T0, with the field at H1. The
external field is increased slowly from H1 to H2 in an isothermal process. Calculate the heat
Q exchanged with the bath. Which way does the heat flow? (Sketch the curve for S vs. T
for a larger field.)

d) When the field reaches H2, the link to the heat bath is removed. The field is then slowly
reduced back to H1 in an adiabatic process. Calculate the final temperature Tf of the sample.

The partition function is

Z = tr
(
e−βH

)
= (2 cosh (βgµBH))N . (4.5.15)
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The entropy is
S = −∂F

∂T
= NkB (log (2 coshx)− x tanhx) , (4.5.16)

where x = βgµBH. (To be fair, the x thing is kind of vacuous...S is always a function of only
one quantity, itself). The plot below shows how the entropy depends on temperature.

S

T

At low temperatures x is very large, and so

S ∼ NkBx (1− tanhx) ∼ NkBxe
−2x. (4.5.17)

The heat transferred is

Q =
S(H2)− S(H1)

T
(4.5.18)

= NkB

(
log

cosh(βgµBH2)

cosh(βgµBH1)
+ βgµB (H1 tanh(βgµBH1)−H2 tanh(βgµBH2))

)
. (4.5.19)

The entropy decreases as H is increased, so heat flows out of the system.

Since the entropy depends only on H
T , the final temperature is

Tf = T
H1

H2
. (4.5.20)

Problem 4.23 (J04T1)
Consider N non-interacting quantized spins in a magnetic field B = Bẑ. The energy of the
spins is −BMz, where

Mz ≡ µ
N∑
i=1

S(i)
z (4.5.21)

is the total magnetization. For each spin, S(i)
z takes only 2S+1 values −S,−S+1, . . . , S− 1, S.

Given the temperature of the system T :

a) Calculate the Gibbs partition function Z(T,B);

b) Calculate the Gibbs free energy G(T,B) and evaluate its asymptotic behavior at weak
(µBS ≪ kBT ) and strong (µB ≫ kBT ) magnetic field;

c) Calculate the zero-field magnetic susceptibility

χ =

(
∂Mz

∂B

)
B=0

(4.5.22)
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d) Calculate the magnetic susceptibility at strong fields µB ≫ kBT .

The Gibbs-ness comes from thinking of the magnetic field as an external force rather than a
part of the system’s Hamiltonian; the calculation is exactly the same as usual. The partition
function is

Z =
(
eβµBS + eβµB(S−1) + . . .+ e−βµBS

)N
=

(
eβµBS − e−βµB(S+1)

1− e−βµB

)N
. (4.5.23)

The free energy is

G = −NkBT log
eβµBS − e−βµB(S+1)

1− e−βµB
. (4.5.24)

For weak fields, we have
G→ −NkBT log(2S + 1), (4.5.25)

and for strong fields,
G→ −NµBS. (4.5.26)

Since we are looking at the zero-field susceptibility, we can use the weak field partition function.
Expanding to second order in the field, we have

Z =

(
(2S + 1) +

1

6
S(S + 1)(2S + 1)(βµB)2 +O(B3)

)N
= (2S + 1)N +

1

6
NS(S + 1)(2S + 1)N (βµB)2 +O(B3).

(4.5.27)

We then have
Mz =

1

B

∂(logZ)

∂β
=

1

3
NS(S + 1)βµ2B +O(B2), (4.5.28)

and so
χ =

1

3
NS(S + 1)βµ2. (4.5.29)

At strong fields, the partition function is eβNµBS , so

Mz =
1

B

∂(logZ)

∂β
= NµS, (4.5.30)

and χ = 0.

These problems show that the mere fact of having a quantum system doesn’t change things too
much: we just use the energy eigenstates as the states, and proceed as before. The fun comes
from identical particles. The state of a system of identical bosons must be symmetric under the
exchange symmetry. For fermions, the state must be antisymmetric under exchange. These rules,
known as Bose-Einstein statistics and Fermi-Dirac statistics respectively, lead to corrections to the
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Figure 4.7

bulk thermodynamic properties of quantum systems.

Problem 4.24 (M03T3)
Consider a single free particle of mass m confined to a volume V . Let Z1(m) denote the quantum
partition function for this system (where the partition sum is taken over the discrete energy levels
of a particle of mass m in a box of volume V ).

a) Show that Z1(m) → V/λ3 with λ = h/
√
2πmkBT in the classical (or small ℏ) limit. Use this

result to calculate the classical energy and heat capacity at fixed volume of the single particle
system.

b) Identify the temperature at which this approximation breaks down.

c) Now consider a system consisting of two identical, non-interacting particles in the same box.
Because of the effects of identical particle statistics, the classical expectation for the two-
particle partition function Z2(m) = Z1(m)2 is not quite correct. Show that the exact free
boson and free fermion two-particle partition sums can in fact be expressed in a simple way
in terms of the one-particle functions Z1(m) and Z1(m/2).

d) Using the classical approximation Z1(m) = V/λ3 derived in the first part of this problem,
calculate the correction to the energy E and the heat capacity C due to Bose or Fermi
statistics.

Assume the volume is a cube with side length L = V 1/3. The partition function is given by

Z1(m) = tr
(
e−βH

)
=

∞∑
nx=1

∞∑
ny=1

∞∑
nz=1

exp

(
− π2ℏ2

2mkBTL2

(
n2x + n2y + n2z

))
. (4.5.31)

As ℏ → 0 we can approximate the sums by integrals, and we find

Z1(m) ≈
ˆ ∞

0

π

2
r2 dr exp

(
− π2ℏ2

2mkBTV 2
r2
)

=
π3/2

8

(
2mkBTL

2

π2ℏ2

)3/2

=
V

λ3
. (4.5.32)



206 CHAPTER 4. STATISTICAL MECHANICS

The only approximation we made was in treating the sum as an integral. This only makes sense
when

T ≫ π2ℏ2

2mkBV 2
, (4.5.33)

or equivalently when λ3 ≪ V .

If we square the partition function, we get two copies of each off-diagonal state, but for either
bosons or fermions we only want one copy. For bosons we still want one copy of the diagonal
states, and for fermions we want to exclude the diagonal states. The diagonal part of Z1(m)2 is
Z1(m/2), so we have

Z2(m) =
1

2

(
Z1(m)2 ± Z1(m/2)

)
, (4.5.34)

where the positive sign is for bosons and the negative sign is for fermions.

In the classical limit this gives

Z2(m) =
1

2

(
V 2

λ6
± 23/2

V

λ3

)
. (4.5.35)

The energy is

E = −∂(logZ)
∂β

= 3kBT
V
λ3

± 21/2

V
λ3

± 23/2
≈ 3kBT

(
1∓

√
2
λ3

V

)
. (4.5.36)

The heat capacity is

C = −T ∂
2F

∂2T
≈ 3kB

(
1∓

√
2
λ3

V

)
. (4.5.37)

Naturally the corrections are of order λ3

V , so the classical expressions hold for λ3 ≪ V .

Problem 4.25 (J05T2)
Consider N ≫ 1 spinless noninteracting bosons contained in an isotropic three-dimensional
harmonic well. In terms of the position r and the momentum p, the single-particle Hamiltonian
is

H =
1

2m
|p|2 + 1

2
mω2

0|r|2, (4.5.38)

where the particles have mass m and the oscillations in the potential have natural frequency ω0.
The resulting energy levels depend on the three quantum numbers

E = ℏω0(nx + ny + nz + (3/2)), (4.5.39)

where each ni = 0, 1, 2, . . .. This can also be represented as energy levels that depend on a single
quantum number n = 0, 1, 2, . . .; ϵn = ϵ0 + nℏω0, but with a degeneracy gn = (n+ 1)(n+ 2)/2,
and ϵ0 =

3
2ℏω0.

a) What is the specific heat cN (T ) per particle, at fixed particle number N , in the “classical
limit” where kBT/ℏω0 is so large that N0 ≪ 1, where N0 is the mean number of particles in
the n = 0 state.

b) Find cN (T ) at low temperatures kBT ≪ ℏω0, including the leading behavior for nonzero
temperatures.
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c) Find the chemical potential, µ(T,N) in the “classical limit.” Above what temperature scale
is the “classical limit” reached?

d) Find µ(T,N) for low temperatures kBT ≪ ℏω0, including the leading behavior for non-zero
temperatures.

e) Since the particles are bosons, N0(T,N) may be macroscopic (i.e. of order N) in a finite
temperature range T < TBEC(N, ℏω0). Obtain an expression for TBEC in the large-N limit.
You can express any numerical constants as dimensionless integrals which you must define,
but need not evaluate.

The partition function for a single particle in a one-dimensional oscillator is
∑
e−βϵn = eℏω/2

eℏω−1
,

so the classical partition function for N particles in a three-dimensional oscillator is

ZN =
1

N !

(
eβℏω/2

eβℏω − 1

)3N

. (4.5.40)

This gives
F = −3

2
Nℏω + 3NkBT log

(
eβℏω − 1

)
+NkBT (logN − 1). (4.5.41)

The heat capacity per particle is

cn(T ) = − T

N

∂2F

∂2T
= 3kB

(βℏω)2eβℏω

(eβℏω − 1)2
. (4.5.42)

In the classical limit, this becomes
cn(T ) → 3kB. (4.5.43)

For low temperatures, the classical partition function will not be precisely correct, because the
factor of 1

N ! does not properly account for Bose statistics. However, this will not affect the heat
capacity, so we can just take the low temperature limit of the formula above to find

cn(T ) →
3ℏ2ω2

kBT 2
e−βℏω. (4.5.44)

The chemical potential is

µ =
∂F

∂N
= 3kBT log

(
eβℏω − 1

)
+ kBT logN − 3

2
ℏω. (4.5.45)

In the classical limit, where kBT ≫ ℏω,

µ→ 3kBT log
N1/3ℏω
kBT

. (4.5.46)

At low temperatures for the chemical potential, we have to start worrying about Bose statistics,
since nearly all the particles will share the ground state. In the grand canonical ensemble, we
have

Z =

∞∑
n=0

enβ(µ−ϵ0) =
1

1− eβ(µ−ϵ0)
, (4.5.47)
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and so the expected number of particles in the ground state is

⟨N0⟩ =
1

β

∂(logZ)

∂µ
=

1

e−β(µ−ϵ0) − 1
. (4.5.48)

Solving for the chemical potential, we find

µ = ϵ0 + kBT log

(
1− 1

N

)
≈ 3

2
ℏω +

kBT

N
. (4.5.49)

As T → 0 we have µ → ϵ0, and so ⟨N0⟩ → ∞, so all the particles will be in the ground state.
A Bose-Einstein condensate is formed when we can replicate this behavior at finite temperature
and finite N . That is, we want µ = ϵ0. If we trusted (4.5.45) in this regime – which we do not
– this would mean

3βℏω
(
1− log

(
eβℏω − 1

))
= logN, (4.5.50)

which gives

T = − ℏω
kB log(1−N−1/3)

∼ ℏωN1/3

kB
. (4.5.51)

We expect to find the same scaling in the final result, possibly with a different overall coefficient.
Following a similar computation as in the previous part, but for all the states, we have

N =

∞∑
n=0

gn

e−β(µ−ϵ0−nℏω) − 1
. (4.5.52)

Setting µ = ϵ0, we have

N =

∞∑
n=0

gn
eβnℏω − 1

≈
ˆ ∞

0

dx

βℏω

1
2

(
x
βℏω + 2

)(
x
βℏω + 1

)
ex − 1

≈ 1

2(βℏω)3

ˆ ∞

0

x2 dx

ex − 1
, (4.5.53)

where we have assumed βℏω ≫ 1. The integral is
ˆ ∞

0

x2e−x dx

1− e−x
=

ˆ ∞

0
x2e−x

(
1 + e−x + e−2x + . . .

)
dx = Γ(3)

(
1 +

1

23
+ . . .

)
= 2ζ(3),

(4.5.54)
so

T =

(
N

ζ(3)

)1/3 ℏω
kB

, (4.5.55)

a result of the form we expected.
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4.6 Quantum Gases

We can give a unified treatment of Bose-Einstein and Fermi-Dirac statistics in the grand canonical
ensemble. The grand partition function is

Z =
∞∑
N=0

eβNµ
∑
{ni}

e−β
∑
niϵi , (4.6.1)

where the inner sum ranges over all allowed sets of occupation numbers with
∑
ni = N . For bosons

any occupation number is allowed, but for fermions only ni = 0, 1 are allowed. As usual with the
grand partition function, we can rearrange the sum to find

Z =
∏
i

(∑
ni

eβni(µ−ϵi)

)
. (4.6.2)

For fermions the sum has only two terms, and for bosons it is an infinite geometric series. Letting
η = +1 for bosons and η = −1 for fermions, we can express this as

logZ = −η
∑
i

log
(
1− ηeβ(µ−ϵi)

)
. (4.6.3)

Taking the derivative with respect to µ, we can find the expected occupation number of the ith
state,

⟨Ni⟩ =
1

eβ(ϵi−µ) − η
. (4.6.4)

Problem 4.26 (M06T3)
Consider a 3-dimensional gas of (spinless, non-relativistic) bosons at pressure P and temperature
T . The bosons can be absorbed onto a (2-dimensional) surface layer, where they are bound with
energy −ϵ0 < 0, but retain their translational degrees of freedom in 2 dimensions. The (ideal) 3D
gas is in equilibrium with the (ideal) 2D adsorbed gas. Treating the 3D gas classically, but the
2D (absorbed) gas quantum mechanically, compute the surface density in the layer as a function
of P and T .

The number of particles in the 3D gas can be written as

N3 = V

ˆ
d3k eβ(µ−ℏ2k2/2m) = eβµ

(
2πmkBT

ℏ2

)3

≡ eβµ
V

λ3
, (4.6.5)

so the chemical potential is

µ = kBT log
N3λ

3

V
= kBT log

Pλ3

kBT
. (4.6.6)

Since the two species are in equilibrium, they have the same chemical potential. This allows us
to determine the number of particles in the 2D gas, using the Bose-Einstein distribution:

N2 = A

ˆ
d2k

eβ(ℏ2k2/2m−ϵ0−µ) − 1
= A

ˆ
2πk dk

kBT
Pλ3

e−βϵ0eλ2k2 − 1
= A log

kBT

kBT − Pλ3eβϵ0
. (4.6.7)
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Thus, the surface density is
N2

A
= log

kBT

kBT − Pλ3eβϵ0
. (4.6.8)

Problem 4.27 (M08T3)
Assume that, to escape from a metal, an electron must impinge from the interior onto the
surface with enough momentum to overcome the confining potential that holds the electrons in
the metal. Also assume that all electrons with such a momentum do escape. Calculate the flux
(number per area per time) of electrons escaping from a metal with work function ϕ (the barrier
energy) at room temperature T . Treat the electrons as an ideal Fermi gas.

For simplicity, let the metal be a cube with side length L. We need to integrate over all wavenum-
bers with ℏ2k2

2me
> ϕ + µ. An electron with wavenumber k will escape in inverse time 1

τ = 2ℏ|k|
Lme

.
Thus, the flux is

F =
1

6L2

L3

(2π)3

ˆ ∞

√
2me(ϕ+µ)/ℏ

4πk2 dk

eβ(ℏ2k2/2me−µ) + 1

2ℏk
Lme

=
ℏ

6π2me

ˆ ∞

√
2me(ϕ+µ)/ℏ

k3 dk

eβ(ℏ2k2/2me−µ) + 1
.

(4.6.9)
Let x = β ℏ2k2

2m , so this becomes

F =
2me

3π2β2ℏ3

ˆ ∞

β(ϕ+µ)

x dx

e−βµex + 1
. (4.6.10)

A typical metal at room temperature has kBT ≪ EF , so we can ignore the 1 in the denominator
and set µ = EF , and we find

F =
2me

3π2β2ℏ3
(1 + β(EF + ϕ)) e−βϕ ≈ 2me

3π2βℏ3
(EF + ϕ)e−βϕ. (4.6.11)

Ideal quantum gases do not behave like ideal classical gases at low temperatures. We can parametrize
the effect using a virial expansion. We start from the grand potential,

G = ηkBT
∑
i

log
(
1− ηeβ(µ−ϵi)

)
. (4.6.12)

Let’s assume we have a gas in a volume V . Then we can replace the sum by an integral over
wavenumbers, with a factor of V g

(2π)3
to get the number of states correct (where g = 2s+1 accounts

for spin-s degeneracy). The energy is ϵk = ℏ2k2
2m . The grand potential is then

G = ηgkBTV

ˆ
d3k

(2π)3
log
(
1− ηeβ(µ−ℏ2k2/2m)

)
. (4.6.13)

The pressure is given by

p = − ∂G
∂V

= −ηgkBT
ˆ

d3k

(2π)3
log
(
1− ηeβ(µ−ℏ2k2/2m)

)
. (4.6.14)
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This is kind of gross, but we can make it better. The integrand only depends on |k|, so we can
replace d3k → 4πk2 dk. Integrating by parts, we find

p = −ηgkBT
ˆ ∞

0

4πk2 dk

(2π)3
log
(
1− ηeβ(µ−ℏ2k2/2m)

)
=

gℏ2

6mπ2

ˆ ∞

0

k4 dk

eβ(ℏ2k2/2m−µ) − η
. (4.6.15)

Now this is looking more like an integral over the number distribution. In fact, if we compute the
energy we find

U = gV

ˆ
d3k

(2π)3
ℏ2k2

2m

1

eβ(ℏ2k2/2m−µ) − η
=
gℏ2V
4mπ2

ˆ ∞

0
dk

k4 dk

eβ(ℏ2k2/2m−µ) − η
. (4.6.16)

We thus have
U =

3

2
pV , (4.6.17)

just as with the ideal monatomic gas.

To find the equation of state, we have to compare the pressure to the number of particles,

N =
gV

2mπ2

ˆ ∞

0

k2 dk

eβ(ℏ2k2/2m−µ) − η
. (4.6.18)

De-dimensionalizing both the number and the pressure, we find

p = kBT
g

λ3
4

3
√
π

ˆ ∞

0

x3/2 dx

z−1ex − η
, (4.6.19)

N =
gV

λ3
2√
π

ˆ ∞

0

x1/2 dx

z−1ex − η
, (4.6.20)

where z = eβµ. Both of these integrals can be expanded in series in the usual way, so we find

p = kBT
g

λ3

(
z + η

z2

25/2
+

z3

35/2
+ . . .

)
, (4.6.21)

N =
gV

λ3

(
z + η

z2

23/2
+

z3

33/2
+ . . .

)
. (4.6.22)

Now things are looking good. At order z we recover the ideal gas equation of state, and we can
make corrections at each higher order:

pV = NkBT

(
1− η

25/2
λ3

g

N

V
+O

(
(N/V )2

))
. (4.6.23)

This is the virial expansion for a quantum gas. From the sign of the first correction term, we see
that fermions experience an effective repulsion, while bosons experience an effective attraction, as
we might have guessed from their statistics.

Problem 4.28 (J14T2)
Consider a Fermi gas of N non-interacting particles in d dimensions where each particle has
kinetic energy K.E. = a|p|ν . The Fermi gas is placed in a box of volume V . Here, a and ν are
positive constants, and N is assumed to be very large.
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a) The Fermi energy can be written approximately as EF ≈ γNλ for some γ and λ. Determine
the exponent λ in terms of d and ν.

b) How does the heat capacity scale with temperature and the number of particles at small
temperatures? Give the answer in terms of λ.

c) For this Fermi gas at temperature T > 0 the pressure P is related to the total energy E
through P = αE/V . Find α in terms of ν and d.

d) For a relativistic Fermi gas in 3 dimensions ν = 1. For this case derive P = αE/V also from
the kinetic theory, with P expressed as the force per unit area exerted by the gas particles
on the walls of the container.

The density of states is uniform in momentum space, and so kF ∝ N1/d. We then have EF ∝
Nν/d, so λ = ν

d .

The energy can be written as

E =

ˆ ∞

0

ϵg(ϵ) dϵ

eβ(ϵ−µ) + 1
=

ˆ ∞

0

ϵ1/λ dϵ

eβ(ϵ−µ) + 1
. (4.6.24)

We have shown formally in some other problem that the leading order correction to the T = 0
value enters at order T 2 and is proportional to the derivative of the numerator, so

C =
∂E

∂T
∝ E

1/λ−1
F T ∝ N1−λT, (4.6.25)

where we have taken µ = EF .

To find the pressure, we start from the grand potential. Ignoring unimportant overall factors,
we have

G = −kBTV
ˆ
d3k log

(
1 + eβ(µ−a(ℏk)

ν)
)
. (4.6.26)

Differentiating with respect to V , and integrating by parts, we find

p =
νaℏν

d

ˆ
kd+ν−1 dk

eβ(a(ℏk)ν−µ) + 1
. (4.6.27)

The energy is given by

E = V

ˆ
a(ℏk)νkd−1 dk

eβ(a(ℏk)ν−µ) + 1
. (4.6.28)

Thus, α = ν
d .

Imagine the relativistic Fermi gas consists of a single particle of momentum p in a volume
V = L3. Furthermore, imagine that its momentum is directed along the x axis (I know, it’s a lot
of imagination). Its velocity is dE

dp = a, so it imparts momentum 2p to a wall with a frequency
a
L , giving an average force 2pa

L , or a pressure pa
3L3 = pa

3V . The energy is just ap, so indeed we find
α = 1

3 = ν
d .
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Now we need to understand what happens when things get degenerate. Of course, the word
“degenerate” has two meanings. One is the common meaning, for example, “look at that guy, what
a degenerate!” I asked my mom what “degenerate” meant after someone said that to me, and
she said it means someone cool that you’d like to hang out with. So that felt good. Anyway, in
the context of quantum gases, “degenerate” means the temperature is so low and/or the density
is so high that the bulk thermodynamic properties are controlled by quantum effects. For Bose
gases, we have already solved problems where the chemical potential becomes equal to the ground
state energy at finite temperatures, so that all the particles are in the ground state of the system.
For Fermi gases, degeneracy means that the temperature is near zero, so the particles are mostly
occupying the lowest N states. In either case, the virial expansion we derived becomes useless
because it converges very slowly.

We will instead derive an expansion, known as the Sommerfeld expansion, which describes how the
Fermi-Dirac distribution function behaves at low temperatures. When we de-dimensionalize the
integral expressions for thermodynamic quantities, we always end up with integrals of the form

f−m(z) =
1

Γ(m)

ˆ ∞

0

xm−1 dx

z−1ex + 1
, (4.6.29)

where z = eβµ. At low temperatures we have z → ∞, so we need an asymptotic expression for
f−m(z). The key idea is that for small T , the Fermi-Dirac distribution is nearly a step function, so
the low-temperature corrections are dominated by the region around log z. We can see this formally
by integrating by parts, giving

f−m(z) = − 1

Γ(m+ 1)

ˆ ∞

0
xm

d

dx

(
1

z−1ex + 1

)
dx. (4.6.30)

Letting x = log z + t, this becomes

f−m(z) = − 1

Γ(m+ 1)

ˆ ∞

− log z
(log z + t)m

d

dt

(
1

et + 1

)
dx

= − (log z)m

Γ(m+ 1)

∞∑
k=0

(
m

k

)
(log z)−k

ˆ ∞

− log z
tk
d

dt

(
1

et + 1

)
dt.

(4.6.31)

Since z is large, we can pretend the integral extends all the way to −∞. Since
d

dt

(
1

et + 1

)
=

d

dt

(
1− et

et + 1

)
= − d

dt

(
1

e−t + 1

)
, (4.6.32)

we have ˆ ∞

−∞
tk
d

dt

(
1

et + 1

)
dt =

{
0 k is odd
2(1− 21−k)Γ(k + 1)ζ(k) kis even

. (4.6.33)

From this follows the Sommerfeld expansion,

f−m(z) = (log z)m
∞∑
k=0

2(1− 21−2k)ζ(2k)

Γ(m− 2k + 1)
(log z)−2k. (4.6.34)

Applying this to the pressure and number density, we have

βp =
g

λ3
f−5/2(z) =

(βµ)5/2

Γ(7/2)

(
1 +

5π2

8
(βµ)−2 + . . .

)
, (4.6.35)

n =
g

λ3
f−3/2(z) =

(βµ)3/2

Γ(5/2)

(
1 +

π2

8
(βµ)−2 + . . .

)
. (4.6.36)
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We know that at T = 0, µ = EF . Comparing this with the expression for the density, we find

EF = kBT

(
Γ(5/2)

nλ3

g

)2/3

. (4.6.37)

Using this, we can get the lowest order correction to the chemical potential:

µ = EF

(
1− π2

12
(βEF )

−2 + . . .

)
. (4.6.38)

Note in particular that
(
∂µ
∂T

)
T=0

= 0. Substituting this expansion into the equations for the
pressure, we are led to

βp = βpF

(
1 +

5π2

12
(βEF )

−2 + . . .

)
, (4.6.39)

where pF = 2
5nEF is the pressure at zero temperature.

Problem 4.29 (J04T2)
Consider a gas of N nonrelativistic fermions with spin 1/2 and mass m initially at zero temper-
ature and confined in a volume V0.

a) Express the kinetic energy of the gas in terms of N and V0.

b) What is the pressure of the gas? You can assume here that the gas is ideal.

c) Now the gas is allowed to expand to the volume V1 ≫ V0 without any energy exchange with
the outside world. Calculate the temperature of the gas after it will reach equilibrium due to
weak interactions between the fermions.

d) What is the pressure of the gas in the final state?

Since the gas is at zero temperature, the fermions will fill the lowest N available states. Setting
V0 = L3, the allowed values of kx, etc. are nπ

L , so the density of states is 2V0
(2π)3

(the factor of 2
for spin degeneracy). This means the volume of momentum space occupied is 4π3N

V0
; the volume

will be a sphere, and so its radius is

kF =

(
3π2N

V0

)1/3

. (4.6.40)

The kinetic energy is

E =

ˆ kF

0
(4πk2 dk)

2V0
π3

ℏ2k2

2m
=

8πV0
5π3

k3F
ℏ2k2F
2m

=
3

5
NEF , (4.6.41)

where EF =
ℏ2k2F
2m is the Fermi energy.
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To find the pressure, we use the grand partition function,

G = −kBT
2V

π3

ˆ
d3k log

(
1 + eβ(µ−ℏ2k2/2m)

)
. (4.6.42)

The pressure is given by

p = − ∂G
∂V

=
2kBT

π3

ˆ
d3k log

(
1 + eβ(µ−ℏ2k2/2m)

)
. (4.6.43)

At zero temperature, µ = EF and we can ignore the 1 in the logarithm, so this gives

p =
ℏ2

mπ3

ˆ kF

0
4πk2 dk

(
k2F − k2

)
=

8ℏ2k5F
15mπ2

. (4.6.44)

The energy of the gas is

E =
3

2
pV =

3

2
pFV

(
1 +

5π2

12

k2BT
2

E2
F

+ . . .

)
. (4.6.45)

Since EF ∼ V −2/3, pF ∼ V −5/3, and so maintaining constant energy implies

1 +
5π2

12

k2BT
2
f

(E
(0)
F )2

(
V1
V0

)2/3

=

(
V1
V0

)5/3

, (4.6.46)

where E(0)
F is the Fermi energy at volume V0. Solving, we find

Tf =
E

(0)
F

kB

(
V1
V0

−
(
V1
V0

)−2/3
)1/2

≈
E

(0)
F

kB

√
V1
V0
. (4.6.47)

The final pressure is trivial to compute:

pf =
8ℏ2k5F
15mπ2

V0
V1
. (4.6.48)

Problem 4.30 (M03T2)
Let us model a white dwarf star as a degenerate Fermi gas of electrons, supported against
gravitational collapse by the electron degeneracy pressure. For simplicity, we will assume that
the star is a sphere of radius R and uniform mass density containing N electrons, N protons,
and N neutrons for an approximate total mass of M = 2Nmp.

a) First, assume that the electrons are not relativistic. Find their Fermi energy and show that
at absolute zero, their total kinetic energy is

Uk =
3N(ℏπ)2

10me

(
3N

πV

)2/3

(4.6.49)

where V is the volume of the star. (Note that the total kinetic energy of the nucleons is much
smaller than that of the electrons.)



216 CHAPTER 4. STATISTICAL MECHANICS

b) The gravitational binding energy of a uniform density sphere is

Ugrav = −3GM2

5R
. (4.6.50)

Find the equilibrium radius for the white dwarf. Eliminate N . How does this radius depend
on the mass?

c) If instead the electrons are highly relativistic, so that their energy and momentum are related
by ϵ = cp, then find the Fermi energy and show that the total kinetic energy is now

Uk =
3Nℏπc

4

(
3N

πV

)1/3

(4.6.51)

d) Under what conditions is a highly relativistic degenerate electron star unstable against col-
lapse? This is called the Chandrasehkar limit. A star that violates the limit will collapse into
a neutron star or black hole, depending on whether neutron degeneracy pressure can hold up
the star.

We derived the kinetic energy of a degenerate Fermi gas in the last problem, no use repeating it
in great detail:

Uk =
3

5
EF =

3ℏ2

10me
k2F =

3ℏ2

10me

(
3π2N

V

)2/3

. (4.6.52)

Substituting V = 4π
3 R

3, the total energy is

E =
3ℏ2

10meR2

(
9πN

4

)2/3

− 3G(2Nmp)
2

5R
. (4.6.53)

Minimizing with respect to R, we find

Req =
3π

8

(
3π2

2N4

)1/3 ℏ2

8Gmem2
p

. (4.6.54)

If the electrons are relativistic, then we have

Uk =

ˆ kF

0
(4πk2 dk)

2V

(2π)3
ℏck =

ℏcV
4π2

k4F =
3Nℏc
4

(
3π2N

V

)1/3

. (4.6.55)

With the relativistic expression, the kinetic energy also scales as R−1, so we run into trouble
when the overall coefficient is negative:

3(M/2mp)ℏc
4

(
9π(M/2mp)

4

)1/3

<
3GM2

5
, (4.6.56)

or more succinctly,

M >
15
√
5π

64m2
p

(
ℏc
g

)3/2

. (4.6.57)
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4.7 Additional Problems

Problem 4.31 (J05T3)
A thermodynamic system has the following relation between its entropy S, volume V , internal
energy U , and particle number N :

S(U, V,N) = γ(UV N)1/3, (4.7.1)

where γ is a constant.

a) Derive a relation connecting U , N , V , and the temperature T .

b) Find the heat capacity CV N at constant V and N , as a function of V , N , and temperature
T .
Now assume you are given two identical bodies with the above properties. N and V are the
same for both, and are fixed, but the two bodies have different initial temperatures, T1 and
T2.

c) If the two bodies are placed in thermal contact, and left alone until heat flow ceases and
equilibrium is reached, what is their common final temperature Tf?

d) If the flow of heat between the bodies is used to drive an engine that does the maximum
possible amount of useful work Wmax before the two bodies reach a common final temperature
T ′
f , what is that temperature? What is Wmax?

We have U = S3

γ3V N
, and so

T =

(
∂U

∂S

)
V,N

=
3S2

γ3V N
. (4.7.2)

This relation implies S =
√

γ3V NT
3 , so the heat capacity is

CV N = T

(
∂S

∂T

)
V,N

=
1

2

√
γ3V NT

3
. (4.7.3)

Let α = 1
2

√
γ3V N

3 , so CV N = αT 1/2. Then when the bodies are placed in thermal contact, we
have

dT1 = − d̄Q

αT
1/2
1

, dT2 =
d̄Q

αT
1/2
2

. (4.7.4)

Integrating, we have

Tf =

(
T
3/2
1 + T

3/2
2

2

)2/3

. (4.7.5)
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If we use a Carnot engine to equilibrate, then the heat transfer at each source is proportional to
the temperature at each source, so we have

dT1 = −T
1/2
1 dx

α
, dT2 =

T
1/2
2 dx

α
. (4.7.6)

By a similar integration we find

T ′
f =

(
T
1/2
1 + T

1/2
2

2

)2

. (4.7.7)

We can determine the work done by balancing the total energy:

Wmax =

ˆ T1

0

(
αT 1/2

)
dT +

ˆ T2

0

(
αT 1/2

)
dT −

ˆ T ′
f

0

(
2αT 1/2

)
dT

=
2

3
α

T 3/2
1 + T

3/2
2 − 2

(
T
1/2
1 + T

1/2
2

2

)3
 .

(4.7.8)

Problem 4.32 (M98T3)
Using the anharmonic potential V (x) = cx2+gx3+fx4, for a one-dimensional classical harmonic
oscillator, find the approximate heat capacity at low temperatures including terms of order T .

The states of the system are pairs (x, p), and so the partition function is

Z =

ˆ
dp e−β

p2

2m

ˆ
dx e−β(cx

2+gx3+fx4) =
√
2πmkBT

ˆ
dx e−β(cx

2+gx3+fx4). (4.7.9)

It’s unclear which term is dominant in the potential, but this looks hard unless g, f ≪ c (also
what is up with the labeling of the coefficients? not even alphabetical…), so we’ll make that
assumption. Then we have

ˆ
dx e−β(cx

2+gx3+fx4) ≈
ˆ
dx e−βcx

2 (
1− β(gx3 + fx4)

)
=

√
π

βc

(
1− 3f

4βc2

)
. (4.7.10)

In total, this gives

Z =
π

β

√
2m

c

(
1− 3f

4β2c2

)
. (4.7.11)

Thus, the heat capacity is

C = −T ∂
2F

∂2T
= kB −

3fk2B
2c2

T +O
(
T 2
)
. (4.7.12)
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Problem 4.33 (J07T3)
Consider spin waves in an isotropic ferromagnetically ordered crystal. These are waves in which
the spins on each atom oscillate in space and time. Just as with sound waves, the spin waves can
be quantized and they can store internal energy in a crystal lattice. However, these waves have
a different relation between frequency and wavenumber than do sound waves. In particular, at
low wavenumber,

ω(k) = Ak2, (4.7.13)

where A is a constant. Consider a crystal containing N spins in thermal equilibrium at temper-
ature T .

a) What is the average energy in a spin wave mode of frequency ω? (Neglect the zero-point
energy of the mode).

b) At low temperatures, the heat capacity of the spin wave system in the crystal is proportional
to Tα. What is the numerical value of α?

c) If the material is a metal, do the spin waves give the dominant contribution to the heat
capacity in the low temperature limit? What if the material is an insulator? Explain both
of your answers.

The average occupancy of a spin mode of frequency ω is

⟨n(ω)⟩ = 1

eβℏω − 1
, (4.7.14)

so the average energy is
⟨E(ω)⟩ = ℏω

eβℏω − 1
. (4.7.15)

At low temperatures, we have ⟨E(ω)⟩ = ℏωe−βℏω. Thus, the energy due to spin waves is

E ∝
ˆ
d3k

(
ℏAk2

)
e−βℏAk

2 ∝ β−5/2. (4.7.16)

Thus, C = ∂E
∂T ∝ T 3/2.

In a metal, the Fermi electron gas gives a contribution C ∝ T at low temperatures, so the
spin waves are subdominant. In an insulator, the other contribution is the phonons which give
C ∝ T 3 at low temperatures, so the spin waves are dominant.
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